- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.10, No.3, 246-252, March, 2000
기계적 합금화 공정을 이용하여 제조한 n형 Bi 2 (Te 0.85 Se 0.15 ) 3 가압소결체의 열전특성
Thermoelectric Properties of the Hot-pressed n-Type Bi 2 (Te 0.85 Se 0.15 ) 3 Alloy Prepared by Mechanical Alloying
초록
기계적 합금화 공정을 이용하여 제조한 Bi 2 (Te 0.85 Se 0.15 ) 3 가압소결체의 가압소결온도에 따른 열전특성을 분석하였다. Bi 2 (Te 0.85 Se 0.15 ) 3 가압소결체는 300 ? C 에서 550 ? C 범위의 가압소결온도에 무관하게 n형 전도를 나타내었다. Bi 2 (Te 0.85 Se 0.15 ) 합금분말을 (50% H 2 +50 Ar) 분위기에서 환원처리시, 분말 표면의 산화층 제거 및 과잉 Te 공격자의 소멸에 기인한 전자 농도의 감소로 가압소결체의 Seebeck 계수가 양의 값으로 변화하였다. 450 ? C 이상의 온도에서 가압소결시 가압소결온도의 증가에 따라 Bi 2 (Te 0.85 Se 0.15 ) 합금의 성능지수가 증가하였으며, 550 ? C 에서 가압소결시 1.92×10 ?3 /K 의 최대성능지수를 얻을 수 있었다.
Thermoelectric properties of the Bi 2 (Te 0.85 Se 0.15 ) 3 alloy, prepared by mechanical alloying and hot pressing, were investigated with the variation of the hot-pressing temperature ranging from 300 ? C to 550 ? C . Contrary to the p-type behavior of single crystal, the hot-pressed Bi 2 (Te 0.85 Se 0.15 ) 3 alloy exhibited n-type conduction without addition of donor dopant. When the Bi 2 (Te 0.85 Se 0.15 ) 3 powders were annealed in (50%H 2 +50%Ar) atmosphere, the hot-pressed specimens exhibited a positive Seebeck coefficient due to the reduction of the electron concentration by removal of the oxide layer on the powder surface and annealing-out of the excess Te vacancies. Figure-of-merit of the hot-pressed Bi 2 (Te 0.85 Se 0.15 ) 3 alloy was improved by hot pressing at temperatures above 450 ? C , and the maximum value of 1.92×10 ?3 /K was obtained for the specimen hot-pressed at 550 ? C.
- Rowe DM, CRC handbook of Thermoelectrics/ CRC Press. Inc., pp.605, 1995 (1995)
- Yim WM, Rosi FD, J. Solid State Electronics, 15, 1121 (1972)
- Ohsugi IJ, Kojima T, Nishida IA, J. Appl. Phys., 68, 5692 (1990)
- Hasezaki K, Nishimura M, Umata M, Tsukuda H, Araaoka M, Proc. 12th Int. Conf. on Thermoelectrics, 307 (1993)
- Gogishvili OS, Lavrinenko IP, Lalykin SP, Melashivili TM, Rogovoy LD, Proc. 11th Int. Conf. on Thermoelectrics, 271 (1992)
- Fukuda F, Onodera A, Haga H, Proc. 12th Int. Conf. on Thermoelectrics, 24 (1993)
- Jung BY, Nam SE, Hyun DB, Shim JD, Oh TS, J. Kor. Inst. Metals. Mater., 35, 153 (1997)
- Kim HJ, Choi JS, Hyun DB, Oh TS, J. Kor. Inst. Metals. Mater., 35, 223 (1997)
- Yanagitani A, Nishikawa S, Kawai Y, Hayashimoto S, Itoh N, Kataoka T, Proc. 12th Int. Conf. on Thermoelectrics, 281 (1993)
- Cook BA, Beaudry BJ, Harringa JL, Barnett WJ, Proc. 9th Int. Conf. on Thermoelectrics, 234 (1990)
- Harman TC, Cahn JH, Logan MJ, J. Appl. Phys., 30, 1351 (1959)
- Okazaki K, Ceramic Engineering for Dielectrics(4th. Ed.)/ Gakken-sha, pp.154, 1992 (1992)
- Miller GR, Li CY, J. Phys. Chem. Solids, 26, 173 (1965)
- Horak J, Cermak K, Koudelka L, J. Phys. Chem. Solids, 47, 805 (1986)
- LaChance MR, Gardner EE, Adv. Energy Conversion, 1, 133 (1961)
- Ohsugi IJ, Kojima T, Kaibe H, Nishida I, Proc. 8th Int. Conf. on Thermoelectrics, 32 (1989)
- Schultz JM, McHugh JP, Tiller WA, J. Appl. Phys., 33, 2443 (1962)
- Gel'fgat DM, Dashevskii ZM, Inorg. Mater., 19, 1172 (1984)
- Kaibe H, Sakabe M, Ohsugi IJ, Nishida I, Proc. 8th Int. Conf. on Thermoelectric Energy Conversion, 195 (1989)
- Alekseeva GT, Verdernikov MV, Konstantinov PP, Kutasov VA, Luk'yanova LV, Proc. 14th Int. Conf. on Thermoelectrics, 73 (1995)
- Imaizumi H, Yamaguchi H, Kaibe H, Nishida I, Proc. 7th Int. Conf. on Thermoelectric Energy Conversion, 141 (1988)
- Nakamura K, Morikawa K, Owada H, Miura K, Ogawa K, Nishida I, Proc. 12th Int. Conf. on Thermoelectrics, 110 (1993)