화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.10, No.3, 246-252, March, 2000
기계적 합금화 공정을 이용하여 제조한 n형 Bi 2 (Te 0.85 Se 0.15 ) 3 가압소결체의 열전특성
Thermoelectric Properties of the Hot-pressed n-Type Bi 2 (Te 0.85 Se 0.15 ) 3 Alloy Prepared by Mechanical Alloying
초록
기계적 합금화 공정을 이용하여 제조한 Bi 2 (Te 0.85 Se 0.15 ) 3 가압소결체의 가압소결온도에 따른 열전특성을 분석하였다. Bi 2 (Te 0.85 Se 0.15 ) 3 가압소결체는 300 ? C 에서 550 ? C 범위의 가압소결온도에 무관하게 n형 전도를 나타내었다. Bi 2 (Te 0.85 Se 0.15 ) 합금분말을 (50% H 2 +50 Ar) 분위기에서 환원처리시, 분말 표면의 산화층 제거 및 과잉 Te 공격자의 소멸에 기인한 전자 농도의 감소로 가압소결체의 Seebeck 계수가 양의 값으로 변화하였다. 450 ? C 이상의 온도에서 가압소결시 가압소결온도의 증가에 따라 Bi 2 (Te 0.85 Se 0.15 ) 합금의 성능지수가 증가하였으며, 550 ? C 에서 가압소결시 1.92×10 ?3 /K 의 최대성능지수를 얻을 수 있었다.
Thermoelectric properties of the Bi 2 (Te 0.85 Se 0.15 ) 3 alloy, prepared by mechanical alloying and hot pressing, were investigated with the variation of the hot-pressing temperature ranging from 300 ? C to 550 ? C . Contrary to the p-type behavior of single crystal, the hot-pressed Bi 2 (Te 0.85 Se 0.15 ) 3 alloy exhibited n-type conduction without addition of donor dopant. When the Bi 2 (Te 0.85 Se 0.15 ) 3 powders were annealed in (50%H 2 +50%Ar) atmosphere, the hot-pressed specimens exhibited a positive Seebeck coefficient due to the reduction of the electron concentration by removal of the oxide layer on the powder surface and annealing-out of the excess Te vacancies. Figure-of-merit of the hot-pressed Bi 2 (Te 0.85 Se 0.15 ) 3 alloy was improved by hot pressing at temperatures above 450 ? C , and the maximum value of 1.92×10 ?3 /K was obtained for the specimen hot-pressed at 550 ? C.
  1. Rowe DM, CRC handbook of Thermoelectrics/ CRC Press. Inc., pp.605, 1995 (1995)
  2. Yim WM, Rosi FD, J. Solid State Electronics, 15, 1121 (1972)
  3. Ohsugi IJ, Kojima T, Nishida IA, J. Appl. Phys., 68, 5692 (1990)
  4. Hasezaki K, Nishimura M, Umata M, Tsukuda H, Araaoka M, Proc. 12th Int. Conf. on Thermoelectrics, 307 (1993)
  5. Gogishvili OS, Lavrinenko IP, Lalykin SP, Melashivili TM, Rogovoy LD, Proc. 11th Int. Conf. on Thermoelectrics, 271 (1992)
  6. Fukuda F, Onodera A, Haga H, Proc. 12th Int. Conf. on Thermoelectrics, 24 (1993)
  7. Jung BY, Nam SE, Hyun DB, Shim JD, Oh TS, J. Kor. Inst. Metals. Mater., 35, 153 (1997)
  8. Kim HJ, Choi JS, Hyun DB, Oh TS, J. Kor. Inst. Metals. Mater., 35, 223 (1997)
  9. Yanagitani A, Nishikawa S, Kawai Y, Hayashimoto S, Itoh N, Kataoka T, Proc. 12th Int. Conf. on Thermoelectrics, 281 (1993)
  10. Cook BA, Beaudry BJ, Harringa JL, Barnett WJ, Proc. 9th Int. Conf. on Thermoelectrics, 234 (1990)
  11. Harman TC, Cahn JH, Logan MJ, J. Appl. Phys., 30, 1351 (1959)
  12. Okazaki K, Ceramic Engineering for Dielectrics(4th. Ed.)/ Gakken-sha, pp.154, 1992 (1992)
  13. Miller GR, Li CY, J. Phys. Chem. Solids, 26, 173 (1965)
  14. Horak J, Cermak K, Koudelka L, J. Phys. Chem. Solids, 47, 805 (1986)
  15. LaChance MR, Gardner EE, Adv. Energy Conversion, 1, 133 (1961)
  16. Ohsugi IJ, Kojima T, Kaibe H, Nishida I, Proc. 8th Int. Conf. on Thermoelectrics, 32 (1989)
  17. Schultz JM, McHugh JP, Tiller WA, J. Appl. Phys., 33, 2443 (1962)
  18. Gel'fgat DM, Dashevskii ZM, Inorg. Mater., 19, 1172 (1984)
  19. Kaibe H, Sakabe M, Ohsugi IJ, Nishida I, Proc. 8th Int. Conf. on Thermoelectric Energy Conversion, 195 (1989)
  20. Alekseeva GT, Verdernikov MV, Konstantinov PP, Kutasov VA, Luk'yanova LV, Proc. 14th Int. Conf. on Thermoelectrics, 73 (1995)
  21. Imaizumi H, Yamaguchi H, Kaibe H, Nishida I, Proc. 7th Int. Conf. on Thermoelectric Energy Conversion, 141 (1988)
  22. Nakamura K, Morikawa K, Owada H, Miura K, Ogawa K, Nishida I, Proc. 12th Int. Conf. on Thermoelectrics, 110 (1993)