화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.10, No.1, 41-48, January, 2000
Cu-9Fe-1.2X (X=Ag, Cr, Co)계 미세복합재료전선의 기계적 특성 및 전기전도도
Mechanical Properties and Electrical Conductivities of In-Situ Cu-9Fe-1.2X(X=Ag, Cr, Co) Microcomposite Wires
초록
본 연구에서는 열가공공정을 거쳐 제조된 Cu-Fe-Xi(Xi=Ag, Cr 또는 Co) 미세복합재료의 미세구조와 기계적 특성 및 전기적 특성에 대하여 조사하였다. 냉각가공 중에 수지상정들은 인발 방향에 평행하게 배열되고 필라멘트 형태로 연산되었다. Ag를 첨가한 미세복합재료가 같은 가공율에서 Co나 Cr를 첨가하는 미세복합재료보다 미세조직이 더욱 미세하게 관찰되었다. 제3첨가원소로 Ag를 함유하고 있는 Cu-Fe-Ag 미세복합재료의 강도와 전도도는 Co나 Cr를 첨가하는 미세복합재료보다 높게 나타났다. Cu-Fe-Ag 미세복합재료의 우수한 기계적 성질과 전기적 특성은 Ag가 함유되어 있는 경우 필라멘트의 미세성과 균일성이 높게 관찰되는 것과 관련이 있다. Cu-Fe-Xi 미세복합재료의 강도는 Fe 필라멘트의 간격을 고려한 Hall-Petch 형태의 식과 일치한다. Cu-Fe-Xi 미세복합재료의 파괴는 연성파괴가 관찰되었다.
In this study, microstructure and mechanical properties and electrical conductivities of in situ Cu-Fe-Xi(Xi=Ag, Cr or Co) alloy wires obtained by cold drawing combined with intermediate heat treatments have investigated. During cold working the primary and secondary dendrite arms are aligned along the drawing direction and elongated into filaments after deformation processing. The addition of Ag was found to be more effective in reducing the microstructural scale at the given draw ratio than that of Co or Cr throughout the drawing processing. The ultimate tensile strength and the conductivity of the Cu-Fe based composites containing Ag were higher than those of Cu-Fe composites containing Co or Cr. The good mechanical and electrical properties of Cu-Fe-Ag wires may be associated with the more uniform distribution of the finer filaments in the wires containing silver. The strength of Cu-Fe-Xi composites is dependent on the spacing of the Fe filaments in accord with a Hall-Petch relationship. The fracture surfaces of all the specimens showed ductile-type fracture and iron filaments occasionally observed on the fracture surfaces.
  1. Verhoeven JD, Schmidt FA, Gibson ED, Spitzing WA, J. Metals, 20 (1986)
  2. Takeuchi T, Inoue K, Maeda H, Journal of the Less-Common Metals, 157, 25 (1990)
  3. Zeik KL, Koss PA, Anderson IE, Howell PR, Metall. Trans., 23A, 2159 (1992)
  4. Jha SC, Delagi RG, Forster IA, Krotz PD, Metall. Trans., 24A, 15 (1993)
  5. Spitzig WA, Downing HL, Laabs FC, Gibson ED, Verhoeven JD, Metall. Trans., 24A, 7 (1993)
  6. Funkenbusch PD, Lee JK, Courtney TH, Metall. Trans., 18A, 1249 (1987)
  7. Malzahn Kampe JC, Courtney TH, Leng Y, Acta Metall., 37, 1735 (1989)
  8. Funkenbusch PD, Courtney TH, Acta Metall., 33, 913 (1985)
  9. Spitzig WA, Pelton AR, Laabs FC, Acta Metall., 35, 2427 (1987)
  10. Funkenbusch PD, Courtney TH, Kubisch DG, Scripta Metall., 18, 1099 (1984)
  11. Frommeyer G, Wassermann GW, Acta Metall., 23, 1353 (1975)
  12. Embury JD, Hill MA, Spitzig WA, Sakai Y, MRS Bull., 18, 57 (1993)
  13. Hong SI, Hill MA, Sakai Y, Wood JT, Embury JD, Acta Metall. Mater., 43, 3313 (1995)
  14. Sakai Y, Inoue K, Asano T, Wada H, Maeda H, Appl. Phys. Lett., 59, 2965 (1991)
  15. Verhoeven JD, Chumbley LS, Laabs FC, Spitzig WA, Acta Metall. Mater., 39, 2825 (1991)
  16. Spitzig WA, Downing HL, Laabs FC, Gibson ED, Verhoeven JD, Metall. Trans., 24A, 7 (1993)
  17. Biselli C, Morris DG, Acta Metall., 44, 493 (1996)
  18. Go YS, Spitzig WA, J. Materials Science, 26, 163 (1991)
  19. Spitzig WA, Chumbley LS, Verhoeven JD, Go YS, Downing HL, J. Materials Science, 27, 2005 (1992)
  20. Verhoeven JD, Chueh SC, Gibson ED, J. Materials Science, 24, 1748 (1989)
  21. Reed-Hill RE, Abaschian R, Physical metallurgy Principle, 645 (1994)
  22. Hong SI, Hill MA, Acta. Mater., 46, 4111 (1998)
  23. Spitzig WA, Krotz PD, Acta Mater., 36, 1709 (1988)
  24. Horibe S, Lee JK, Laird C, Mater. Sci. Eng., 63A, 257 (1984)
  25. Verhoeven JD, Downing HL, Chumbley LS, Laabs FC, Gibson ED, J. Appl. Phys., 65, 1293 (1989)
  26. Karasek KR, Berk J, J. Appl. Phys., 52, 1370 (1981)
  27. Jerman GA, Anderson IE, Verhoeven JD, Metall. Trans., 24A, 35 (1993)