화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.9, No.11, 1112-1116, November, 1999
고/액 계면에서의 Peltier 열 측정 및 결정성장에의 응용 II : 측정과 응용
Measurement of Peltier Heat at the Solid/Liquid Interface and Its Application to Crystal Growth II : Measurement and Application
초록
Bi 2 Te 3 의 고/액 계면을 통하여 전류밀도와 방향을 달리 하면서 통전시켰을 때 발생하는 고상, 액상 및 고/액 계면에서의 미소 온도변화를 측정하였다. 이 냉각(가열) 효과는 전류밀도, 통전방향 및 시간에 따라 다르게 나타났으며, 온도변화에 미치는 Peltier 열, Thomson 열 및 Joule 열의 영향을 이론 및 실험에 의해 각각 분류하였다. Bi 2 Te 3 의 고/액상간의 Peltier 계수는 -1.10 ×10 ?1 V이었으며, 고상과 액상의 Thomson 계수는 각각 7.31\times\textrm{10}^{-4}V/K와 5.77\times\textrm{10}^{-5}V/K이었다. 직류를 통전하면서 Bi 2 Te 3 결정을 성장한 결과, 고상에서 액상으로 통전한 경우, Peltier 냉각에 의한 온도구배의 상승으로 방향성이 향상된 결정을 얻을 수 있었지만, 전류의 방향을 반대로 하면, 결정성 향상에 별 도움을 주지 못하였다.
Thermoelectric effects on the temperature changes at the solid- and liquid-phase and its interface were studied by using the unidirectional solidification of Bi 2 Te 3 . Cooling or heating effects measured with current density. polarity and current passing time were quite different. By separating sole Peltier, Thomson and Joule heat theoretically and experimentally, the Peltier coefficient at the solid/liquid interface of Bi 2 Te 3 was -1.10 ×10 ?1 V, and the Thomson coefficients of solid- and liquid-phase were 7.31\times\textrm{10}^{-4}V/K, 5.77\times\textrm{10}^{-5}V/K, respectively. When D.C. passed from solid-phase to liquid-phase during the crystal growth of Bi 2 Te 3 the crystal with more directionality was obtained owing to increase of the temperature gradient in liquid by the Peltier cooling. But in reverse current direction, the crystallinity was not changed significantly.
  1. Davies GJ, Solidification. Casting, 40 (1973)
  2. Bardeen JM, Chandrasekhar BS, J. Appl. Phys., 29, 1372 (1958)
  3. Brush LN, Coriell SR, McFadden GB, J. Crystal Growth, 102, 725 (1990)
  4. Coriell SR, McFadden GB, Wheeler AA, Hurle DTJ, J. Crystal Growth, 94, 334 (1989)
  5. 김일호, 장경욱, 이동희, 응용물리, 4, 550 (1991)
  6. Silberstein RP, Larson DJ, Jr., Dressler B, Metall. Trans., 15A, 2147 (1984)
  7. Yim WM, Rosi D, Solid-State Electronics, 15, 1121 (1972)
  8. Enderby JE, Amorphous and Liquid Semiconductors, 404 (1974)
  9. Horne RA, J. Appl. Phys., 30, 393 (1959)
  10. Barnard RD, Thermoelectricity in Metals and Alloys, 59 (1972)