화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.9, No.10, 992-999, October, 1999
산화처리된 구리계 리드프레임과 EMC 사이의 접착력 측정
Measurement of Adhesion Strength between Oxidized Cu-based Leadframe and EMC
초록
본래 약한 구리계 리드프레임/EMC(Epoxy Molding Compound) 계면의 접착력은 솔더 리플로우 (solder reflow) 공정 중에 종종 박형 플라스틱 패키지의 팝콘 균열 현상(popcorn-cracking phenomena)을 일으킨다. 본 연구에서는 리드프레임/EMC 계면의 접착력을 향상시키기 위하여 리드프레임을 알칼리 용액에 담궈 표면에 brown oxide를 형성시켰으며, EMC로 몰딩(molding)하여 SDCB(Sandwiched Double Cantilever Beam) 시편 및 SBN(Sandwiched Brazil-Nut) 시편을 준비하여 접착력을 측정하였다. 리드프레임의 brown oxide 처리는 미세한 바늘모양의 CuO 결정들을 리드프레임 표면에서 형성시켰으며, 리드프레임/EMC 계면의 접착력을 향상시켰다. 접착력의 향상은 산화층의 평균두께와 직접적인 관련이 있었다. 이는 미세한 바늘모양의 CuO 결정들이 EMC와 기계적인 고착(mechanical interlocking)을 하기 때문으로 생각된다.
ue to the inherently poor adhesion strength of Cu-based leadframe/EMC(Epoxy Molding Compound) interface, popcorn-cracking phenomena of thin plastic packages frequently occur during the solder reflow process. In this study, in order to enhance the adhesion strength of Cu-based leadframe/EMC interface, brown-oxide layer was formed on the leadframe surface by immersing of leadframe sheets in hot alkaline solution, and the adhesion strength of leadframe/EMC interface was measured by using SDCB(Sandwiched Double Cantilever Beam) and SBN(Sandwiched Brazil-Nut) specimens. Results showed that brown oxide treatment of leadframe introduced fine acicular CuO crystals on the leadframe surface and improved the adhesion strength of leadframe/EMC interface. Enhancement of adhesion strength was directly related to the thickening kinetics of oxide layer. This might be due to the mechanical interlocking of fine acicular CuO crystals into EMC.
  1. Ganesan GS, Berg HM, IEEE Trans. on Components, 16, 940 (1993)
  2. Adachi M, Ohuchi S, Totsuka N, IEEE Trans. on Components, 16, 550 (1993)
  3. Tay AAO, Tan GL, Lim TB, IEEE Trans. on Components, Packaging, 17, 201 (1994)
  4. Sauber J, Lee L, Hsu S, Hongsmatip T, IEEE Trans. on Components, 17, 533 (1994)
  5. Kitano M, Nishimura A, Kawai S, Proc. IRPS, 90 (1988)
  6. Cui CQ, Tay HL, Chai TC, Gopalakrishan R, Lim TB, Proc. 48th Electronic Components and Technology Conf., 1162 (1998)
  7. Moon BH, Yoo HY, Sawada K, Proc. 48th Electronic Components and Technology Conf., 1148 (1998)
  8. Kembell C, Adhesion, Eley DD, Oxford University Press, 19 (1961)
  9. Takano E, Mino T, Takahashi K, Sawada K, Shimizu SY, Yoo HY, Proc. 47th Electronic Components and Technology Conf., 78 (1997)
  10. Cho SJ, Paik KW, Kim YG, IEEE Trans. on Components, 20, 167 (1997)
  11. Lee C, Sler WH, Cerva H, Von Criegern R, Parthasarathi A, Proc. 48th Electronic Components and Technology Conf., 1154 (1998)
  12. Mino T, Sawada K, Kuroshi A, Otsuka M, Kawamura N, Yoo HY, Proc. 48th Electronic Components and Technology Conf., 1125 (1998)
  13. Momioka Y, Miyake J, Proc. 49th Electronic Components and Technology Conf., 714 (1999)
  14. Tay AAO, Goh KY, Proc. 49th Electronic Components and Technology Conf., 694 (1999)
  15. Chen WT, Flavin TF, IBM J. Res. Dev., 16, 203 (1972)
  16. Kim KS, Aravas N, Int. J. Solid Struc., 24, 417 (1988)
  17. Suo Z, Ph. D. thesis, 1 (1989)
  18. Hutchinson JW, Mear ME, Rice JR, ASME J. Applied Mechanics, 54, 828 (1987)
  19. Love BJ, Packman PF, J. Adhesion, 40, 139 (1993)
  20. Evans JRG, Packham DE, J. Adhesion, 9, 267 (1978)
  21. Ashworth V, Fairhurst D, J. Electrochem. Soc., 124, 506 (1977)
  22. Strehblow HH, Titze B, Electrochemica Acta., 55, 839 (1980)
  23. Lee HY, Ph. D. thesis, 67 (1999)
  24. Suo Z, Hutchinson JW, Mater. Sci. Eng., A107, 135 (1989)
  25. Oh TS, Cannon RM, Ritchie RO, J. Am. Ceram. Soc., 70, C352 (1987)
  26. Atkinson C, Smelser RE, Sanchez J, Int. J. Frac., 18, 279 (1982)
  27. Wang JS, Suo Z, Acta Metall. Mater., 38, 1279 (1990)
  28. Liechti KM, Chai YS, J. Appl. Mech., 59, 295 (1992)
  29. Evans AG, Hutchinson JW, Acta Metall, 37(3), 909 (1989)