화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.9, No.10, 1032-1036, October, 1999
Pb( Zr 0.5 Ti 0.5 ) O 3 전자총의 상부 전극 크기에 따른 전자 방출 및 열화
Electron Emission and Degradation of the Pb( Zr 0.5 Ti 0.5 ) O 3 Electron Guns with Various Upper Electrode Sizes
초록
Pb( Zr 0.5 Ti 0.5 ) O 3 강유전체의 상부 전극 크기를 변화시키며 펄스 전기장에 의한 전자 방출 특성 및 열화에 대하여 연구하였다. 상부 전극 크기 감소에 따라 상부 전극 모서리 부근에서 분극 반전에 기여하는 강유전체 분율이 증가되어 분극이 높아졌으며, ANSYS 5.3에 의한 전기장 시뮬레이션을 통하여 비대칭 전극 구조에서의 상부 전극 모서리 부근의 전기장이 증가한다는 것을 알 수 있었다. 분극 증가에 기여하는 상부 전극 모서리 주변의 강유전체의 부피 및 전극크기당 전자 방출량은 상부 전극 크기에 무관하였다. 전자 방출 횟수에 따라 상부 전극이 침식되어 분극 및 유전 상수는 감소하였으나 전극 복구에 의해 재생되었으며, 강유전체의 표면 손상에 의해 항전계 및 유전 손실은 증가되었다.
The electron emission and degradation of the ferroelectric Pb( Zr 0.5 Ti 0.5 ) O 3 ceramics by the pulse electric field have been investigated as a function of the upper electrode diameter. Polarization increased with the decrease of the upper electrode diameter due to the increase of the volume fraction participated in the polarization reversal near the electrode edge. Simulation using ANSYS 5.3 for the electric field distribution showed that the electric field increased near the upper electrode edge of the asymmetric electrode structure. The ferroelectric volume near the upper electrode edge which contributed to the increase of the polarization and the emission charge per electrode diameter were independent on the upper electrode diameter. Polarization and dielectric constant were decreased due to the erosion of the upper electrode with repeating the emission cycles, but they were recovered by the electrode regeneration. The degradation of the ferroelectric surface resulted in the increase of the coercive field and dielectric loss.
  1. Gundel H, Riege H, Handerek J, Zioutas K, Appl. Phys. Lett., 54(21), 2071 (1989)
  2. Gundel H, Handerek J, Riege H, Wilson EJN, Zioutas K, Ferroelectrics, 109, 137 (1990)
  3. Gundel H, Auciello A(ed.), Waser R(ed.), Science Technology of electronic thin films, 335 (1995)
  4. Flechtner D, Golkowski C, Lvers JD, Kerlick GS, Nation JA, Sch chter L, J. Appl. Phys., 83(2), 955 (1998)
  5. Mesyatz GA, IEEE Transactions on Dielectric and Electrical Insulation, 2(2), 272 (1995)
  6. Rosenman G, Shur D, Garb K, Cohen R, J. Appl. Phys., 82(12), 772 (1997)
  7. Gundel H, Ferroelectrics, 184, 89 (1996)
  8. Auciello O, Ray MA, Palmer D, Duarte J, McGuire GE, Temple D, Appl. Phys. Lett., 66(17), 2183 (1995)
  9. Asano J, Iwasaki S, Okuyama M, Hamakawa Y, Jpn. J. Appl. Phys., 32(9B), 4284 (1993)
  10. Puchkarev VF, Mesyats GA, J. Appl. Phys., 78(9), 5633 (1995)
  11. Gundel H, Meineke A, Ferroelectrics, 146, 29 (1993)
  12. Lubicki P, Proceedings of the 1998 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 1, 296 (1998)
  13. Kugel VD, Rosenman G, Shur D, Krasik YE, J. Appl. Phys., 78(4), 2248 (1995)
  14. Averty D, Chartier JL, Gundel HW, Bihan RL, Integrated Ferroelectrics, 18, 91 (1997)
  15. Roseblum B, Braeunlich P, Carrico JP, Appl. Phys. Lett., 25(1), 17 (1974)
  16. Rosenman G, Pechorskii VI, Rez IS, Sov. Phys. Solid State, 23(12), 2162 (1981)
  17. Okuyama M, Asano J, Hamakawa Y, Integrated Ferroelectrics, 9, 133 (1995)
  18. Kurchania R, Milne SJ, J. Mater. Res., 14(5), 1852 (1999)
  19. Heydari H, Tille T, Proceedings of the 1998 Particle Acceleerator Conference, 3, 2784 (1998)
  20. Asano J, Imai T, Okuyama M, Hamakawa Y, Jpn. J. Appl. Phys., 31(9B), 3098 (1992)
  21. Handerek J, Riege H, Ferroelectrics, 128, 43 (1992)
  22. Kuratani Y, Omura S, Okuyama M, Hamakawa Y, Jpn. J. Appl. Phys., 34(9B), 5471 (1995)
  23. Gundel H, Handerek J, Riege H, Wilson EJN, Ferroelectrics, 110, 183 (1990)
  24. Pleyber G, Biedrzycki K, Bihan RL, Ferroelectrics, 141, 125 (1993)
  25. Kuratani Y, Morikawa Y, Okuyama M, Jpn. J. Appl. Phys., 37, 5421 (1998)
  26. Lee EG, Wouters DJ, Willems G, Maes HE, Appl. Phys. Lett., 69(9), 1223 (1996)