- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.9, No.10, 1041-1046, October, 1999
Zr 0.8 Sn 0.2 ) TiO 4 세라믹스의 마이크로파 유전특성에 미치는 ( B 2 O 3 . Li 2 O )의 영향
Effect of ( B 2 O 3 . Li 2 O ) on the Microwave Dielectric Properties of the ( Zr 0.8 Sn 0.2 ) TiO 4 Ceramics
초록
(Zr(sub)0.8Sn(sub)0.2) TiO 4 세라믹스와 소결조제로서 ( B 2 O 3 .Li 2 O)의 첨가에 따른 마이크로파 유전특성 및 미세구조에 미치는 영향에 대하여 연구하였다. 1.0 mol.% Sb 2 O(sub)5를 첨가하고 130 0 ? C 에서 5시간 소결한 (Zr(sub)0.8Sn(sub)0.2) TiO 4 세라믹스의 경우 ( B 2 O 3 .Li 2 O)첨가량 증가에 따라 치밀화 및 결정립 성장에 의해 유전상수와 Q.f값은 증가하여 첨가량이 0.35wt.%에서 최대값인 38과 59,000을 각각 나타내었으며, 0.50wt.% 이상 첨가한 경우에서는 제 2상의 생성으로 인하여 감소하였다. 1.0 mol% Sb 2 O(sub)5와 0.35wt.% ( B 2 O 3 . Li 2 O)를 첨가한 (Zr(sub)0.8Sn(sub)0.2)TiO 4 세라믹스를 125 0 ? C 와 135 0 ? C 에서 5시간 소결한 경우에는 각각 미반응 TiO 2 의 존재와 과대입자성장에 의한 결정립내기공의 생성으로 인하여 마이크로파 유전특성은 저하되었다.
Effect of (B2O3.Li2O) as a sintering aid on the microwave dielectric properties and the microstructure of the (Zro Sno)TiO4 ceramics were investigated. When the (Zr Sno)TiO4 ceramics doped with 1.0 mol % SbO5 were sintered at 1300oC for 5h, the dielectric constant and the Q.f values were enhanced with an increase of the amount of (B2O3.LiO) up to 0.35 wt & due to the densification and the grain growth, and reached the maximum values of 38 and 59,000 respectively. However, those properties were decreased above 0.50 wt.& due to the formation of the secondary phase. When the(Zro Sno)TiO4 ceramics with 1.0 mol% Sb5 and 0.35 wt % (B2O3 . LiO)were sintered at 1250 oC and 1350oC for 5 h, the microwave dielectric properties were deteriotated by the presence of the unreacted TiO2 phase and by the formation of the intragranular pores resulting from the abnormal grain growh, respectively.
- Wolfram G, Gobel HE, Mater. Res. Bull., 30(7), 813 (1995)
- Newnham RE, J. Am. Ceram. Soc., 50(4), 216 (1967)
- Coughnour LW, Roth RS, DeProsse VA, J. Res. Natl. Bur. Standard, 52(1), 37 (1954)
- Iddles DM, Bell AJ, Moulson AJ, J. Mater. Sci., 27, 6303 (1992)
- Michiura N, Tatekawa T, Higuchi Y, Tamura H, J. Am. Ceram. Soc., 78(3), 793 (1995)
- Fang Y, Xu Z, Hu A, Payne DA, Ferroelectrics, 135, 139 (1992)
- Wakino K, Minai K, Tamura H, J. Am. Cream. Soc., 67(4), 278 (1984)
- Kawashima S, Nishida M, Ueda I, Ouchi H, J. Am. Cream. Soc., 66(6), 421 (1983)
- Heiao YC, Wu L, Wei CC, Mat. Res. Bull., 23, 1687 (1988)
- Yoon KH, Kim ES, Mater. Res. Bull., 30(7), 813 (1995)
- Yoon KH, Kim YS, Kim ES, J. Mater. Res., 10(8), 2085 (1995)
- Kudesia R, McHale A, Snyder RL, J. Am. Ceram. Soc., 77(12), 3215 (1994)
- Takada T, Wang SF, Yoshikawa S, Jang SJ, Newnham RE, J. Am. Ceram. Soc., 77(9), 2485 (1994)
- Sastry BSR, Hummel FA, J. Am. Cream. Soc., 41(1), 7 (1958)
- Hakki BW, Coleman PD, IRE Trans. Microwave Theory Tech., 8, 402 (1960)
- Kobayashi Y, Tanake S, Tech. Rept. CPM, 72 (1972)
- Kim WS, Kim YH, Kim ES, Yoon KH, Jpn. J. Appl. Phys., 37(9B), 5367 (1998)
- Physical Constants of Inorganic Compound, CRC Handbook of Chemistry and Physics/ CRC Press, pp.B73-B140, 1987 (1987)
- Osbond PC, Whatmore RW, Ainger FW, Proc. Br. Ceram. Soc., 36, 167 (1985)
- Han KR, Jang JW, Cho SY, Jeong DY, Hong KS, J. Am. Ceram. Soc., 81(5), 1209 (1998)