화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.5, 934-938, May, 2015
Cyclic CO2 capture characteristics of a pellet derived from sol-gel CaO powder with Ca12Al14O33 support
E-mail:
A novel calcium-based pellet was prepared by extrusion of sol-gel CaO powder and cement with high aluminum-based content. Limestone was used for comparison. The cyclic CO2 capture performance and carbonation kinetics of the sorbents were investigated in a thermogravimetric analyzer (TGA). The changes in phase and microstructure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer Emmet Teller (BET) surface area, respectively. The results indicate that the pellet consisted of CaO and Ca12Al14O33 after initial calcination. Limestone reactivity decreased dramatically with the increase in the cycle number, whereas the pellet showed a relatively stable cyclic CO2 capture performance with high reactivity. The CO2 capture capacity of the pellet achieved 0.43 g CO2/g sorbent after 50 cycles at 650 oC and 850 oC for carbonation and calcination, respectively. Moreover, the pellet obtained fast carbonation rates with slight decay after multiple cycles. The porous microstructure of the pellet contributed to the high reactivity of the sorbent during high temperature reactions, and the support material of Ca12Al14O33, enhanced the cyclic durability of the calcium-based sorbents.
  1. MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman CS, Williams CK, Shah N, Fennell P, Energy Environ. Sci., 3, 1645 (2010)
  2. Yu FC, Phalak N, Sun ZC, Fan LS, Ind. Eng. Chem. Res., 51(4), 2133 (2012)
  3. An H, Song T, Shen LH, Zhang L, Feng B, Ind. Eng. Chem. Res., 51(40), 13046 (2012)
  4. Zaman M, Lee JH, Korean J. Chem. Eng., 30(8), 1497 (2013)
  5. Zahid U, Lim Y, Jung J, Han C, Korean J. Chem. Eng., 28(3), 674 (2011)
  6. Choi JH, Yi CK, Jo SH, Ryu HJ, Park YC, Korean J. Chem. Eng., 31(2), 194 (2014)
  7. Dean CC, Blamey J, Florin NH, Al-Jeboori MJ, Fennell PS, Chem. Eng. Res. Des., 89(6A), 836 (2011)
  8. Blamey J, Anthony EJ, Wang J, Fennell PS, Prog. Energy Combust. Sci., 36(2), 260 (2010)
  9. Wang SP, Fan SS, Zhao YJ, Fan LJ, Liu SY, Ma XB, Ind. Eng. Chem. Res., 53(25), 10457 (2014)
  10. Cao CQ, Zhang K, He CC, Zhao YA, Guo QJ, Chem. Eng. Sci., 66(3), 375 (2011)
  11. Abanades JC, Chem. Eng. J., 90(3), 303 (2002)
  12. Feng B, Liu WQ, Li X, An H, Energy Fuels, 20(6), 2417 (2006)
  13. Fang F, Li ZS, Cai NS, Korean J. Chem. Eng., 26(5), 1414 (2009)
  14. Witoon T, Ceram. Int., 37, 3291 (2011)
  15. Grasa GS, Abanades JC, Ind. Eng. Chem. Res., 45(26), 8846 (2006)
  16. Liu WQ, An H, Qin CL, Yin JJ, Wang GX, Feng B, Xu MH, Energy Fuels, 26(5), 2751 (2012)
  17. Sun RY, Li YJ, Liu HL, Wu SM, Lu CM, Appl. Energy, 89(1), 368 (2012)
  18. Manovic V, Anthony EJ, Environ. Sci. Technol., 43, 7117 (2009)
  19. Li CC, Wu UT, Lin HP, J. Mater. Chem. A, 2, 8252 (2014)
  20. Zhang XY, Li ZG, Peng Y, Su WK, Sun XX, Li JH, Chem. Eng. J., 243, 297 (2014)
  21. Yin JJ, Qin CL, Feng B, Ge L, Luo C, Liu WQ, An H, Energy Fuels, 28(1), 307 (2014)
  22. Qin CL, Yin JJ, Luo C, An H, Liu WQ, Feng B, Chem. Eng. J., 228, 75 (2013)
  23. Li YJ, Sun RY, Liu HL, Lu CM, Ind. Eng. Chem. Res., 50(17), 10222 (2011)
  24. Chen HC, Zhao CS, Duan LB, Liang C, Liu DJ, Chen XP, Fuel Process. Technol., 92(3), 493 (2011)
  25. Luo C, Zheng Y, Ding N, Wu QL, Bian GA, Zheng CG, Ind. Eng. Chem. Res., 49(22), 11778 (2010)
  26. Broda M, Kierzkowska AM, Muller CR, ChemSusChem, 5, 411 (2012)
  27. Akgsornpeak A, Witoon T, Mungcharoen T, Limtrakul J, Chem. Eng. J., 237, 189 (2014)
  28. Santos ET, Alfonsin C, Chambel AJS, Fernandes A, Dias APS, Pinheiro CIC, Ribeiro MF, Fuel, 94(1), 624 (2012)
  29. Xu P, Xie MM, Cheng ZM, Zhou ZM, Ind. Eng. Chem. Res., 52(34), 12161 (2013)
  30. Angeli SD, Martavaltzi CS, Lemonidou AA, Fuel, 127, 62 (2014)
  31. Kierzkowska AM, Muller CR, Energy Environ. Sci., 5, 6061 (2012)
  32. Luo C, Zheng Y, Zheng CG, Yin JJ, Qin CL, Feng B, Int. J. Greenh. Gas Con., 12, 193 (2013)
  33. Li ZS, Liu Y, Cai NS, Chem. Eng. Sci., 89, 235 (2013)
  34. Luo C, Zheng Y, Ding N, Wu QL, Zheng CG, Chin. Chem. Lett., 22, 615 (2011)
  35. Zhou ZM, Qi Y, Xie MM, Cheng ZM, Yuan WK, Chem. Eng. Sci., 74, 172 (2012)
  36. Wang K, Guo X, Zhao PF, Zheng CG, Appl. Clay. Sci., 50, 41 (2010)
  37. Manovic V, Anthony EJ, Ind. Eng. Chem. Res., 49(15), 6916 (2010)
  38. Li ZS, Cai NS, Huang YY, Han HJ, Energy Fuels, 19(4), 1447 (2005)
  39. Martavaltzi CS, Lemionidou AA, Ind. Eng. Chem. Res., 47(23), 9537 (2008)
  40. Manovic V, Anthony EJ, Ind. Eng. Chem. Res., 48(19), 8906 (2009)
  41. Li ZS, Cai NS, Huang YY, Ind. Eng. Chem. Res., 45(6), 1911 (2006)
  42. Bhatia SK, Perlmutter DD, AIChE J., 29, 79 (1983)
  43. Luo C, Shen QW, Ding N, Feng ZX, Zheng Y, Zheng CG, Chem. Eng. Technol., 35(3), 547 (2012)
  44. Witoon T, Mungcharoen T, Limtrakul J, Appl. Energy, 118, 32 (2014)