Korean Journal of Chemical Engineering, Vol.32, No.4, 707-716, April, 2015
Effect of attapulgite calcination on heavy metal adsorption from acid mine drainage
E-mail:
Attapulgite calcined at 973.15K was characterized and utilized as an adsorbent for the removal of heavy metals and neutralization of acid mine drainage (AMD) from a gold mine. Batch adsorption experiments were carried out using a thermostatic shaker. Activated attapulgite showed that it can neutralize AMD as it raised the pH from 2.6 to 7.3 after a residence time of 2 h. Metal ion removal after 2 h was 100% for Cu (II), 99.46% for Fe (II), 96.20% for Co (II), 86.92% for Ni (II) and 71.52% for Mn (II) using a 2.5% w/v activated attapulgite loading. The adsorption best fit the Langmuir isotherm; however, Cu (II), Co (II), and Fe (II) data fit the Freundlich isotherm as well. Calcination at 973.15 K resulted in the reduction of the equilibrium residence time from 4 to 2 h, solid loading reduction from 10 to 2.5% m/v and an increase in maximum adsorption capacity compared with unactivated attapulgite.
- Younger PL, Banwart SA, Hedin RS, Mine water hydrology, pollution, remediation, Dordrecht, The Netherlands, Kluwer Academic (2002). (2002)
- Stumm W, Morgan JJ, Aquatic Chemistry, 3rd Ed., Wiley, New York (1996). (1996)
- Expert Team of the Inter-Ministerial Committee, Mine water management in the Witwatersrand Gold Fields with special emphasis on acid mine drainage, Report to the Inter-Ministerial Committee on Acid Mine Drainage. Pretoria: Department of Water Affairs (2010). (2010)
- Filion MP, Siroois LL, Ferguson K, CIM Bulletin, 83, 33 (1990)
- Caraballo MA, Macias F, Rotting TS, Nieto JM, Ayora C, Environ. Pollut., 159, 3613 (2011)
- Murphy CB, Spiegel SJ, Water Pollut. Federat., 54, 849 (1982)
- Rios CA, Williams CD, Roberts CL, J. Hazard. Mater., 156(1-3), 23 (2008)
- Zhang HB, Tong ZF, Wei TY, Tang YK, Desalination, 276(1-3), 103 (2011)
- Falayi T, Ntuli F, J. Ind. Eng. Chem., http://dx.doi.org/10.1016/j.jiec.2013.07.007 (2013)
- Tutu H, McCarthy TS, Cukrowska E, Appl. Geochem., 23, 3666 (2008)
- Frost RL, Cash CA, Kloprogge JT, Vibrational Spectroscopy, 16, 173 (1998)
- Madejova J, Komadel P, Clays Clay Min., 49, 410 (2001)
- Yan W, Liu D, Tan D, Yuan P, Chen M, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 97, 1052 (2012)
- Hirsiger W, Vonmoos MM, Wiedemann HG, Thermochim. Acta, 13, 223 (1975)
- Van-Scoyoc GE, Serna CJ, Ahlrichs JL, American Mineralogist, 64, 215 (1979)
- Dixon JB, Weed SB, Minerals in Soil Environments, 2nd Ed. Soil Science Society of America, Wisconsin, USA (1989). (1989)
- Ntuli F, Lewis AE, Chem. Eng. Sci., 64(9), 2202 (2009)
- Gan F, Zhou J, Wang H, Du C, Chen X, Water Res., 43, 2907 (2009)
- Ucun H, Bayhan YK, Kaya Y, Cakici A, Algur OF, Desalination, 154(3), 233 (2003)
- James EH, Inorganic Chemistry Principles, Harper & Row (1978). (1978)
- Juang RS, Wu FC, Tseng RL, Environ. Technol., 18, 525 (1997)
- Tryball RE, Mass Transfers Operations, 3rd Ed., McGraw-Hill, New York (1980). (1980)
- Bhattacharyya KG, Gupta SS, Appl. Clay Sci., 41, 1 (2008)
- Okoye IP, Obi C, International Arch. Appl. Sci. Technol., 3, 58 (2012)
- Gupta VK, Ind. Eng. Chem. Res., 37(1), 192 (1998)
- Vieira MGA, Neto AFA, Gimenes ML, da Silva MGC, J. Hazard. Mater., 177(1-3), 362 (2010)
- Balintova M, Holub M, Singovszka E, Chem. Eng. Trans., 28, 1 (2012)
- Boonchom B, Youngme S, Maensiri S, Danvirutai C, J. Alloy. Compd., 454, 78 (2008)
- Liu XD, Hagihala M, Zheng XG, Meng DD, Guo DX, Chin. Phys. Lett, 28, 1 (2011)
- Paavo L, Jouni T, ActaChemicaScandinavica, 27, 2287 (1973)
- Mohammad A, Desalination, 250, 885 (2010)
- Sposito G, The Chemistry of Soils, New York, Oxford University Press (1989). (1989)