화학공학소재연구정보센터
Macromolecular Research, Vol.23, No.3, 284-290, March, 2015
Fabrication of natural rubber/epoxidized natural rubber/nanosilica nanocomposites and their physical characteristics
E-mail:,
Epoxidized natural rubber (ENR) was initially prepared from an in situ performic acid epoxidation reaction with 46.09 mol% epoxide groups, and the curing characteristics of the ENR/natural rubber (NR) blend with different blend ratios of ENR were studied using a Monsanto moving die rheometer. The mechanical properties of the blends, such as the tensile strength, modulus at 300% elongation and elongation at break, were also examined. The tensile strength and 300% modulus decreased with increasing ENR content and the elongation at break increased steadily with increasing ENR content. In addition, the scorch time, cure time, maximum torque and torque difference decreased with increasing ENR content. Scanning electron microscopy (SEM) of the tensile fracture surfaces of the rubber blend samples revealed better compatibility between NR and ENR with lower ENR contents. Nanocomposites based on NR/ENR blends with two different ratios, 100/0 and 80/10, reinforced with 10 phr nanosilica were also prepared to examine the effects of ENR on the mechanical properties and morphology of the nanocomposites. SEM showed that ENR assists in the dispersion of nanosilica in the NR matrix, resulting in improved mechanical properties of the nanocomposite.
  1. Gelling IR, Rubber Chem. Technol., 58, 86 (1985)
  2. Gelling IR, Porter M, in Natural Rubber Science and Technology, Robert AD, Ed., Oxford University Press, Oxford, 1988, Chap. 10.
  3. Xu HY, Liu JW, Fang L, Wu CF, J. Macromol. Sci.-Phys., 46, 693 (2007)
  4. Cataldo F, Macromol. Mater. Eng., 287, 348 (2002)
  5. Luo YY, Wang YQ, Zhong JP, He CZ, Li YZ, Peng Z, J. Inorg. Organomet. Polym., 21, 777 (2011)
  6. Varughese S, Tripathy DK, J. Appl. Polym. Sci., 44, 1847 (1992)
  7. Schaal S, Coran AY, Mowdood SK, US Patent 6482884 B1 (2002).
  8. Lin CJ, Hergenrother WL, US Patent 6845797 B2 (2005).
  9. Kantala C, Wimolmala E, Sirisinha C, Sombatsompop N, Polym. Adv. Technol., 20, 448 (2009)
  10. George KM, Varkey JK, Thomas KT, Mathew NM, J. Appl. Polym. Sci., 85(2), 292 (2002)
  11. Karnda S, Kannika S, Wilma KD, Jacques WM, Eur. Polym. J., 51, 69 (2014)
  12. Ayutthaya WDN, Poompradub S, Macromol. Res., 22(7), 686 (2014)
  13. Teh PL, Ishak ZAM, Hashim AS, Karger-Kocsis J, Ishiaku US, J. Appl. Polym. Sci., 94(6), 2438 (2004)
  14. Teh PL, MohdIshak ZA, Hashim AS, Karger-Kocsis J, Ishiaku US, Eur. Polym. J., 40, 2513 (2004)
  15. Seyvet O, Navard P, J. Appl. Polym. Sci., 78(5), 1130 (2000)
  16. Das A, Debnath SC, De D, Basu DK, J. Appl. Polym. Sci., 93(1), 196 (2004)
  17. Choi SS, J. Appl. Polym. Sci., 79(6), 1127 (2001)
  18. Ismail H, Chia HH, Eur. Polym. J., 34, 1857 (1998)
  19. Ismail H, Rusli A, Rashid AA, Polym. Test, 24, 856 (2005)
  20. Manna AK, Bhattacharyya AK, De PP, Tripathy DK, De SK, Peiffer DG, Polymer, 39(26), 7113 (1998)
  21. Suzuki N, Ito M, Ono S, J. Appl. Polym. Sci., 95(1), 74 (2005)
  22. Surya I, Ismail H, Azura AR, Polym. Test, 40, 24 (2014)
  23. Sae-oui P, Sirisinha C, Thepsuwan U, Hatthapanit K, Eur. Polym. J., 42, 479 (2006)
  24. Park SJ, Kim KS, Kim BJ, J. Adhes. Sci. Technol., 26(6), 861 (2012)
  25. Yoon JH, Yang IH, Jeong UC, Chung KH, Lee JY, Oh JE, Polym. Eng. Sci., 53(5), 992 (2013)
  26. Burfield DR, Lim K, Law K, Ng S, Polymer, 25, 995 (1984)
  27. Ward AAM, Stoll B, von Soden W, Herminghaus S, Mansour AA, Macromol. Mater. Eng., 288, 971 (2003)
  28. Mullins L, J. Polym. Sci., 19, 225 (1956)
  29. Poh BT, Ismail H, Quah EH, Chin PL, J. Appl. Polym. Sci., 81(1), 47 (2001)
  30. Ismail H, Poh BT, Eur. Polym. J., 36, 2403 (2000)
  31. Ramesan MT, Mathew G, Kuriakose B, Alex R, Eur. Polym. J., 37, 719 (2001)
  32. Toki S, Hsiao BS, Macromolecules, 36(16), 5915 (2003)
  33. Chenal JM, Chazeau L, Guy L, Bomal Y, Gauthier C, Polymer, 48(4), 1042 (2007)