Polymer(Korea), Vol.39, No.3, 468-474, May, 2015
라텍스 기법에 의한 폴리스티렌/그래핀 나노필러 나노복합재료의 제조 및 물성
Preparation and Properties of Polystyrene/Graphene Nanofiller Nanocomposites via Latex Technology
E-mail:
초록
고분자 재료에 전기 전도성을 부여하기 위해 그래핀 기반의 나노필러를 도입하여 전도성 나노복합재료를 제조하였다. 그래핀 나노필러는 폴리스티렌(PS) 입자와 수계 분산이 용이하도록 산화 그래핀(GO) 및 poly(styrenesulfonate)가 도포된 환원된 산화 그래핀(PSS-RGO)을 사용하였다. GO는 흑연으로부터 modified Hummers 방법으로 합성하였으며, PSS-RGO는 GO가 분산된 PSS 용액을 hydrazine monohydrate로 환원시켜 제조하였다. 라텍스 기법으로 제조한 PS/GO 및 PS/PSS-RGO 나노복합재료의 모폴로지, 유변물성 및 전기적 물성을 고찰하였다. GO 및 PSS-RGO 나노필러는 PS 매트릭스 내에 잘 분산된 모폴로지를 보여 주었다. 그래핀 나노필러 함량에 따른 유변학적, 전기적 임계점은 GO가 0.28, 0.51 wt%로 나타났고 PSS-RGO는 0.50, 1.01 wt%로 나타났다. PS/GO 나노복합재료가 우수한 전기 전도도를 보여주는 이유는 성형시의 열처리에 의해 GO가 환원되어 전기적 물성을 부분적으로 회복했기 때문으로 판단된다.
Electrically conductive polymer nanocomposites were prepared by the inclusion of graphene-based nanofillers. Graphene oxide (GO) and reduced graphene oxide wrapped by poly(styrene sulfonate) (PSS-RGO) were used as nanofillers to make good dispersion with the aqueous dispersion of polystyrene (PS) particles. GO sheets were synthesized by the modified Hummers' method from graphite, and PSS-RGO sheets were prepared by the reduction of GO-dispersed PSS solution with hydrazine monohydrate. Morphology and properties of PS/GO and PS/PSS-RGO nanocomposites via latex technology were investigated. Both nanofillers showed well dispersed morphology in PS matrix. Rheological and electrical percolation thresholds were 0.28 and 0.51 wt% for GO, and 0.50 and 1.01 wt% for PSS-RGO respectively. It is speculated that PS/GO nanocomposites showed better conductivity than PS/PSS-RGO counterparts due to the partial recovery of GO by thermal reduction during molding.
Keywords:nanocomposite;latex technology;graphene nanofiller;rheological properties;electrical conductivity
- Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS, J. Mater. Chem., 16, 155 (2006)
- Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
- Novoselov KS, Geim AK, Morozov SV, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA, Nature, 438, 197 (2005)
- Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN, Nano Lett., 8, 902 (2008)
- Lee C, Wei X, Kysar JW, Hone J, Science, 321, 385 (2008)
- Lee W, Lee JU, Jung BM, Byun JH, Yi JW, Lee SB, Kim BS, Carbon, 65, 296 (2013)
- Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666 (2004)
- Berger C, Song ZM, Li TB, Li XB, Ogbazghi AY, Feng R, Dai ZT, Marchenkov AN, Conrad EH, First PN, de Heer WA, J. Phys. Chem. B, 108(52), 19912 (2004)
- Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J, Nano Lett., 9, 30 (2009)
- Jiao L, Zhang L, Wang X, Diankov G, Dai H, Nature, 458, 877 (2009)
- Hummers WS, Offeman RE, J. Am. Ceram. Soc., 80, 1339 (1958)
- Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD, Chem. Mater., 11, 771 (1999)
- Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M, Carbon, 42, 2929 (2004)
- Moon IJ, Lee J, Ruoff RS, Lee H, Nat. Commun., 1, 73 (2010)
- Williams G, Seger B, Kamat PV, ACS Nano, 2, 1487 (2008)
- Chen W, Yan L, Bangal PR, Carbon, 48, 1146 (2010)
- Gurunathan S, Han JW, Eppakayala V, Kim JH, Colloids Surf. B: Biointerfaces, 105, 58 (2013)
- Wang J, Zhou T, Deng H, Chen F, Wang K, Zhang Q, Fu Q, Colloids Surf. B: Biointerfaces, 101, 171 (2013)
- Jiang SH, Gui Z, Bao CL, Dai K, Wang X, Zhou KQ, Shi YQ, Lo SM, Hu Y, Chem. Eng. J., 226, 326 (2013)
- Hu GJ, Zhao CG, Zhang SM, Yang MS, Wang ZG, Polymer, 47(1), 480 (2006)
- Li L, Ma R, Iyi N, Ebina Y, Takada K, Sasaki T, Chem. Commun., 29, 3125 (2006)
- Ju HM, Huh SH, Choi SH, Lee HL, Mater. Lett., 64, 357 (2010)
- Sriprachuabwong C, Karuwan C, Wisitsorrat A, Phokharatkul D, Lomas T, Sritongkham P, Tuantranont A, J. Mater. Chem., 22, 5478 (2012)
- Jo K, Lee T, Choi HJ, Park JH, Lee DJ, Lee DW, Kim BS, Langmuir, 27(5), 2014 (2011)
- Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI, Macromolecules, 37(24), 9048 (2004)