화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.6, 1029-1036, June, 2015
A real-time model based on least squares support vector machines and output bias update for the prediction of NOx emission from coal-fired power plant
E-mail:
The accurate and reliable real-time estimation of NOx emission is indispensable for the implementation of successful control and optimization of NOx emission from a coal-fired power plant. We apply a real-time update scheme to least squares support vector machines (LSSVM) to build a real-time version for real-time prediction of NOx. Incorporation of LSSVM in the update scheme enhances its generalization ability for long-term predictions. The proposed real-time model based on LSSVM (LSSVM-scheme) is applied to NOx emission process data from a coal-fired power plant in Korea to compare the prediction performance of NOx emission with real-time model based on partial least squares (PLS-scheme). Prediction results show that LSSVM-scheme predicts robustly for a long passage of time with higher accuracy in comparison with PLS-scheme. We also present a user friendly and sophisticated graphical user interface to enhance the convenience to approach the features of real-time LSSVM-scheme.
  1. Zhou H, Cen KF, Fan JR, Energy, 29(1), 167 (2004)
  2. Ligang Z, Hailin J, Minggao Y, Minggao Y, Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on, 1 (2010). (2010)
  3. Matsumura S, Iwahara T, Ogata K, Fujii S, Suzuki M, Control Eng. Practice, 6, 1267
  4. Sjoberg J, Zhang Q, Ljung L, Benveniste A, Delyon B, Glorennec P, Hjalmarsson H, Juditsky A, Automatica, 12, 1691 (1995)
  5. Li K, Thompson S, Peng J, Control Eng. Practice, 12, 707 (2004)
  6. Lv Y, Liu JZ, Yang TT, Ind. Eng. Chem. Res., 51(49), 16092 (2012)
  7. Lee YK, Kim M, Han C, J. Environ. Eng., 131, 961 (2005)
  8. Adali T, Bakal B, SONmez MK, Fakory R, Integr Comput-Aid E, 6, 27 (1999)
  9. Wu F, Zhou H, Ren T, Zheng L, Cen KF, Fuel, 88(10), 1864 (2009)
  10. Hui S, Power and Energy Engineering Conference (APPEEC), 2012 Asia-Pacific, 1 (2012). (2012)
  11. Vapnik V, The nature of statistical learning theory, Springer Verlag, New York (1995). (1995)
  12. Suykens JAK, Vandewalle J, Neural Processing Letters, 9, 293 (1999)
  13. Sheng L, Zhen Y, Industrial Engineering and Engineering Management (IE&EM), 2011 IEEE 18th International Conference on, 1732 (2011). (2011)
  14. Tatinati S, Wang Y, Shafiq G, Veluvolu KC, Conf. Proc. IEEE Eng. Med. Biol. Soc., 6043 (2013)
  15. Niazi A, Sharifi S, Amjadi E, J. Electroanal. Chem., 623, 86 (2008)
  16. Niazi A, Goodarzi M, Yazdanipour A, J. Braz. Chem. Soc., 19, 536 (2008)
  17. Balabin RM, Lomakina EI, Analyst, 136, 1703 (2011)
  18. Ahmed F, Nazir S, Yeo YK, Korean J. Chem. Eng., 26(1), 14 (2009)
  19. Cortes C, Vapnik V, Mach Learn, 20, 273 (1995)
  20. Helland K, Berntsen HE, Borgen OS, Martens H, Chemom. Intell. Lab. Syst., 14, 129 (1992)
  21. Mu SJ, Zeng YZ, Liu RL, Wu P, Su HY, Chu J, J. Process Control, 16(6), 557 (2006)
  22. Kaneko H, Funatsu K, J. Chem. Eng. Jpn., 46(3), 219 (2013)
  23. Sharmin R, Sundararaj U, Shah S, Griend LV, Sun YJ, Chem. Eng. Sci., 61(19), 6372 (2006)
  24. Kubinyi H, “Qsar in drug design,” Handbook of Chemoinformatics, Wiley-VCH Verlag GmbH, 1532 (2008). (2008)
  25. Rucker C, Rucker G, Meringer M, J. Chem. Inf. Model., 47, 2345 (2007)
  26. Geladi P, Kowalski BR, Anal. Chim. Acta, 185, 1 (1986)
  27. Kennedy P, A guide to econometrics, MIT Press (2003). (2003)