Korean Journal of Chemical Engineering, Vol.32, No.6, 1029-1036, June, 2015
A real-time model based on least squares support vector machines and output bias update for the prediction of NOx emission from coal-fired power plant
E-mail:
The accurate and reliable real-time estimation of NOx emission is indispensable for the implementation of successful control and optimization of NOx emission from a coal-fired power plant. We apply a real-time update scheme to least squares support vector machines (LSSVM) to build a real-time version for real-time prediction of NOx. Incorporation of LSSVM in the update scheme enhances its generalization ability for long-term predictions. The proposed real-time model based on LSSVM (LSSVM-scheme) is applied to NOx emission process data from a coal-fired power plant in Korea to compare the prediction performance of NOx emission with real-time model based on partial least squares (PLS-scheme). Prediction results show that LSSVM-scheme predicts robustly for a long passage of time with higher accuracy in comparison with PLS-scheme. We also present a user friendly and sophisticated graphical user interface to enhance the convenience to approach the features of real-time LSSVM-scheme.
Keywords:NOx Prediction;Real-time Model;Least Squares Support Vector Machine;Partial Least Squares;Output Bias Update
- Zhou H, Cen KF, Fan JR, Energy, 29(1), 167 (2004)
- Ligang Z, Hailin J, Minggao Y, Minggao Y, Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on, 1 (2010). (2010)
- Matsumura S, Iwahara T, Ogata K, Fujii S, Suzuki M, Control Eng. Practice, 6, 1267
- Sjoberg J, Zhang Q, Ljung L, Benveniste A, Delyon B, Glorennec P, Hjalmarsson H, Juditsky A, Automatica, 12, 1691 (1995)
- Li K, Thompson S, Peng J, Control Eng. Practice, 12, 707 (2004)
- Lv Y, Liu JZ, Yang TT, Ind. Eng. Chem. Res., 51(49), 16092 (2012)
- Lee YK, Kim M, Han C, J. Environ. Eng., 131, 961 (2005)
- Adali T, Bakal B, SONmez MK, Fakory R, Integr Comput-Aid E, 6, 27 (1999)
- Wu F, Zhou H, Ren T, Zheng L, Cen KF, Fuel, 88(10), 1864 (2009)
- Hui S, Power and Energy Engineering Conference (APPEEC), 2012 Asia-Pacific, 1 (2012). (2012)
- Vapnik V, The nature of statistical learning theory, Springer Verlag, New York (1995). (1995)
- Suykens JAK, Vandewalle J, Neural Processing Letters, 9, 293 (1999)
- Sheng L, Zhen Y, Industrial Engineering and Engineering Management (IE&EM), 2011 IEEE 18th International Conference on, 1732 (2011). (2011)
- Tatinati S, Wang Y, Shafiq G, Veluvolu KC, Conf. Proc. IEEE Eng. Med. Biol. Soc., 6043 (2013)
- Niazi A, Sharifi S, Amjadi E, J. Electroanal. Chem., 623, 86 (2008)
- Niazi A, Goodarzi M, Yazdanipour A, J. Braz. Chem. Soc., 19, 536 (2008)
- Balabin RM, Lomakina EI, Analyst, 136, 1703 (2011)
- Ahmed F, Nazir S, Yeo YK, Korean J. Chem. Eng., 26(1), 14 (2009)
- Cortes C, Vapnik V, Mach Learn, 20, 273 (1995)
- Helland K, Berntsen HE, Borgen OS, Martens H, Chemom. Intell. Lab. Syst., 14, 129 (1992)
- Mu SJ, Zeng YZ, Liu RL, Wu P, Su HY, Chu J, J. Process Control, 16(6), 557 (2006)
- Kaneko H, Funatsu K, J. Chem. Eng. Jpn., 46(3), 219 (2013)
- Sharmin R, Sundararaj U, Shah S, Griend LV, Sun YJ, Chem. Eng. Sci., 61(19), 6372 (2006)
- Kubinyi H, “Qsar in drug design,” Handbook of Chemoinformatics, Wiley-VCH Verlag GmbH, 1532 (2008). (2008)
- Rucker C, Rucker G, Meringer M, J. Chem. Inf. Model., 47, 2345 (2007)
- Geladi P, Kowalski BR, Anal. Chim. Acta, 185, 1 (1986)
- Kennedy P, A guide to econometrics, MIT Press (2003). (2003)