화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.6, 1060-1063, June, 2015
Gas-liquid mass transfer coefficient of methane in bubble column reactor
E-mail:,
Biological conversion of methane gas has been attracting considerable recent interest. However, methanotropic bioreactor is limited by low solubility of methane gas in aqueous solution. Although a large mass transfer coefficient of methane in water could possibly overcome this limitation, no dissolved methane probe in aqueous environment is commercially available. We have developed a reactor enabling the measurement of aqueous phase methane concentration and mass transfer coefficient (kLa). The feasibility of the new reactor was demonstrated by measuring kLa values as a function of spinning rate of impeller and flow rate of methane gas. Especially, at spinning rate of 300 rpm and flow rate of 3.0 L/min, a large kLa value of 102.9 h.1 was obtained.
  1. Naik S, Goud V, Rout P, Dalai A, Renew. Sust. Energ. Rev., 14, 578 (2010)
  2. Dubois I, Curr. Opin. Environ., 3, 11 (2011)
  3. Novaes E, Kirst M, Chiang V, Sederoff H, Sederoff R, Plant Phys., 154, 555 (2010)
  4. Henstra A, Sipma J, Rinzema A, Stams A, Curr. Opin. Biotechnol., 18, 200 (2007)
  5. Montgomery SL, Jarvie DM, Bowker KA, Pollastro RM, AAPG Bull., 89(2), 155 (2005)
  6. Ross DJK, Bustin RM, Mar. Petrol. Geol., 26, 916 (2005)
  7. Park D, Lee J, Korean J. Chem. Eng., 30(5), 977 (2013)
  8. Morris SA, Radajewski S, Willison TW, Murrel JC, Appl. Environ. Microbiol., 68, 1446 (2002)
  9. King GM, Adamsen APS, Appl. Environ. Microbiol., 58, 2758 (1992)
  10. Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Op den Camp HJM, Nature, 450, 874 (2007)
  11. Setzmann U, Wagner W, Pruss A, J. Phys. Chem. Ref Data, 20, 1061 (2001)
  12. Helgeson HC, Richard L, McKenzie W, Norton DL, Schmitt A, Geochim. Cosmochim. Ac., 73, 594 (2009)
  13. Duan Z, Mao S, Geochim. Cosmochim. Ac., 70, 3369 (2006)
  14. Duan Z, Moller N, Greenberg J, Weare JH, Geochim. Cosmochim. Acta, 56, 1451 (1992)
  15. Akita K, Yoshidal F, Ind. Eng. Chem. Proc. Des. Dev., 12, 76 (1973)
  16. Park S, Yasin M, Kim D, Park H, Kang C, Kim D, Chang I, Ind. Microbiol. Biotechnol., 40, 995 (2013)
  17. Riggs SS, Heindel TJ, Biotechnol. Prog., 22(3), 903 (2006)
  18. Riet KV, Ind. Eng. Chem. Proc. Des. Dev., 18, 357 (1979)
  19. Yu YH, Ramsay JA, Ramsay BA, Biotechnol. Bioeng., 95(5), 788 (2006)
  20. Yamamoto S, Alcauskas JB, Crozier TE, J. Chem. Eng. Data, 2, 1 (1976)
  21. Karimi A, Golbabaei F, Mehrnia MR, Neghab M, Mohammad K, Nikpey A, Pourmand MR, Iran. J. Environ. Health Sci. Eng., 10, 1 (2013)
  22. Martin M, Montes FJ, Galan MA, Chem. Eng. Sci., 63(12), 3223 (2008)
  23. Fujasova M, Linek V, Moucha T, Chem. Eng. Sci., 62(6), 1650 (2007)
  24. Puthli M, Rathod V, Pandit A, Biochem. Eng. J., 23, 25 (2005)
  25. Arjunwadkar S, Sarvanan K, Kulkarni P, Pandit A, Biochem. Eng. J., 1, 99 (1998)