화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.6, 1164-1169, June, 2015
Kinetics of thermal decomposition of ε-hexanitrohexaazaisowurtzitane by TG-DSC-MS-FTIR
E-mail:
Thermal decomposition of ε-hexanitrohexaazaisowurtzitane (HNIW) was studied by thermogravimetrydifferential scanning calorimetry-mass spectrometry-Fourier transform infrared spectroscopy (TG-DSC-MS-FTIR) simultaneous analysis. It has been shown that there is a crystal transition point for ε-HNIW, and only a single decomposition process has been observed for HNIW. The kinetic parameters of thermal decomposition of HNIW were obtained by Kissinger and Flynn-Wall-Ozawa methods, indicating that HNIW has the higher reactivity compared to the other nitramines. The HNIW decomposition mechanism demonstrated by the non-isothermal kinetics conformed to Avrami-Erofeev equation with the factor of nucleus growth of n=1/3 and the conversion degree of α from 0.1 to 0.7. The MS and FTIR analyses indicated that the thermal decomposition of HNIW favors N-N bond cleavage over C-N bond cleavage as the rate determining step.
  1. Kissinger HE, Anal. Chem., 29, 1702 (1957)
  2. Lee JS, Jaw KS, J. Therm. Anal. Calorim., 85(2), 463 (2006)
  3. Naik NH, Gore GM, Gandhe BR, Sikder AK, J. Hazard. Mater., 159(2-3), 630 (2008)
  4. Liptay G, Nagy J, Kuszmann AB, Weil JC, J. Therm. Anal. Calorim., 32, 1683 (1987)
  5. Liu R, Zhou ZN, Yin YL, Yang L, Zhang TL, Thermochim. Acta, 537, 13 (2012)
  6. Xing XL, Zhao FQ, Ma SN, Xu SY, Xiao LB, Gao HX, Hu RZ, J. Therm. Anal. Calorim., 110, 1451 (2012)
  7. Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J, J. Phys. Chem. A, 109(12), 12964 (2005)
  8. Xu XJ, Xiao HM, Xiao JJ, Zhu W, Huang H, Li JS, J. Phys. Chem. B, 110(14), 7203 (2006)
  9. Sorescu DC, Rice BM, Thompson DL, J. Phys. Chem. B, 102(6), 948 (1998)
  10. Korsounskii BL, Nedelko VV, Chukanov NV, Larikova TS, Volk F, Russ. Chem. Bull., 49(5), 812 (2000)
  11. Yang RJ, An HM, Tan HM, Combust. Flame, 135(4), 463 (2003)
  12. Patil DG, Brill TB, Combust. Flame, 87, 145 (1991)
  13. Turcotte R, Vachon M, Kwok QSM, Wang RP, Jones DEG, Thermochim. Acta, 433(1-2), 105 (2005)
  14. Nedelko AV, Chukanov NV, Raevskii AV, Korsounskii BL, Larikova TS, Kolesova OI, Propellants, Explosives, Pyrotechnics, 25, 255 (2000)
  15. Yan QL, Zeman S, Elbeih A, Song ZW, J. Therm. Anal. Calorim., 112, 823 (2013)
  16. Jiang XB, Guo XY, Ren H, Zhu YL, Jiao QJ, J. Chem. Eng. Jpn., 45(6), 380 (2012)
  17. Jiang X, Guo X, Ren H, Jiao Q, Central European J. Energ. Mater., 9(3), 139 (2012)
  18. Ren yl, Cheng BW, Zhang JS, Jiang AB, Fu WL, Chem. Res. Chiness Universities, 24(5), 628 (2008)
  19. An C, Geng X, Wang J, Sci. Tech. Energetic Materials, 73(5-6), 175 (2012)
  20. Lobbecke S, Bohn MA, Pfeil A, Krause H, 29th International Annual Conference of ICT, 145, Karlsruhe, Germany (1998).
  21. Ozawa T, J. Therm. Anal., 2, 301 (1970)
  22. Hu RZ, Gao SL, Zhao FQ, Shi QZ, Zhang TL, Zhang JJ, Thermal analysis kinetics, Second Ed., Beijing, Science Press (2008)(In Chinese).
  23. MacCallum JR, Tanner J, Eur. Polym. J., 6, 907 (1970)
  24. Coats AW, Redfern JP, Nature, 201, 68 (1964)
  25. Satava V, Sestak JJ, J. Therm. Anal., 8, 477 (1975)
  26. Yang ZQ, Hu RZ, Liang YJ, Li XD, Acta Phys. Chim. Sinica, 2(1), 13 (1986)
  27. Kim JH, Yim YJ, J. Chem. Eng. Jpn., 32(2), 237 (1999)
  28. Brush PJ, Temperature Jump/Fourier transform Infrared Spectroscopy: A Noval Method for Investigation the Chemistry of a Burning Surface, University of Delaware (1993).
  29. Thynell ST, Gongwer PE, Brill TB, J. Propul. Power, 12(5), 933 (1996)
  30. Zhu YL, Huang H, Ren H, Jiao QJ, J. Energy Mater., 31, 178 (2013)