Korean Journal of Chemical Engineering, Vol.32, No.6, 1164-1169, June, 2015
Kinetics of thermal decomposition of ε-hexanitrohexaazaisowurtzitane by TG-DSC-MS-FTIR
E-mail:
Thermal decomposition of ε-hexanitrohexaazaisowurtzitane (HNIW) was studied by thermogravimetrydifferential scanning calorimetry-mass spectrometry-Fourier transform infrared spectroscopy (TG-DSC-MS-FTIR) simultaneous analysis. It has been shown that there is a crystal transition point for ε-HNIW, and only a single decomposition process has been observed for HNIW. The kinetic parameters of thermal decomposition of HNIW were obtained by Kissinger and Flynn-Wall-Ozawa methods, indicating that HNIW has the higher reactivity compared to the other nitramines. The HNIW decomposition mechanism demonstrated by the non-isothermal kinetics conformed to Avrami-Erofeev equation with the factor of nucleus growth of n=1/3 and the conversion degree of α from 0.1 to 0.7. The MS and FTIR analyses indicated that the thermal decomposition of HNIW favors N-N bond cleavage over C-N bond cleavage as the rate determining step.
- Kissinger HE, Anal. Chem., 29, 1702 (1957)
- Lee JS, Jaw KS, J. Therm. Anal. Calorim., 85(2), 463 (2006)
- Naik NH, Gore GM, Gandhe BR, Sikder AK, J. Hazard. Mater., 159(2-3), 630 (2008)
- Liptay G, Nagy J, Kuszmann AB, Weil JC, J. Therm. Anal. Calorim., 32, 1683 (1987)
- Liu R, Zhou ZN, Yin YL, Yang L, Zhang TL, Thermochim. Acta, 537, 13 (2012)
- Xing XL, Zhao FQ, Ma SN, Xu SY, Xiao LB, Gao HX, Hu RZ, J. Therm. Anal. Calorim., 110, 1451 (2012)
- Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J, J. Phys. Chem. A, 109(12), 12964 (2005)
- Xu XJ, Xiao HM, Xiao JJ, Zhu W, Huang H, Li JS, J. Phys. Chem. B, 110(14), 7203 (2006)
- Sorescu DC, Rice BM, Thompson DL, J. Phys. Chem. B, 102(6), 948 (1998)
- Korsounskii BL, Nedelko VV, Chukanov NV, Larikova TS, Volk F, Russ. Chem. Bull., 49(5), 812 (2000)
- Yang RJ, An HM, Tan HM, Combust. Flame, 135(4), 463 (2003)
- Patil DG, Brill TB, Combust. Flame, 87, 145 (1991)
- Turcotte R, Vachon M, Kwok QSM, Wang RP, Jones DEG, Thermochim. Acta, 433(1-2), 105 (2005)
- Nedelko AV, Chukanov NV, Raevskii AV, Korsounskii BL, Larikova TS, Kolesova OI, Propellants, Explosives, Pyrotechnics, 25, 255 (2000)
- Yan QL, Zeman S, Elbeih A, Song ZW, J. Therm. Anal. Calorim., 112, 823 (2013)
- Jiang XB, Guo XY, Ren H, Zhu YL, Jiao QJ, J. Chem. Eng. Jpn., 45(6), 380 (2012)
- Jiang X, Guo X, Ren H, Jiao Q, Central European J. Energ. Mater., 9(3), 139 (2012)
- Ren yl, Cheng BW, Zhang JS, Jiang AB, Fu WL, Chem. Res. Chiness Universities, 24(5), 628 (2008)
- An C, Geng X, Wang J, Sci. Tech. Energetic Materials, 73(5-6), 175 (2012)
- Lobbecke S, Bohn MA, Pfeil A, Krause H, 29th International Annual Conference of ICT, 145, Karlsruhe, Germany (1998).
- Ozawa T, J. Therm. Anal., 2, 301 (1970)
- Hu RZ, Gao SL, Zhao FQ, Shi QZ, Zhang TL, Zhang JJ, Thermal analysis kinetics, Second Ed., Beijing, Science Press (2008)(In Chinese).
- MacCallum JR, Tanner J, Eur. Polym. J., 6, 907 (1970)
- Coats AW, Redfern JP, Nature, 201, 68 (1964)
- Satava V, Sestak JJ, J. Therm. Anal., 8, 477 (1975)
- Yang ZQ, Hu RZ, Liang YJ, Li XD, Acta Phys. Chim. Sinica, 2(1), 13 (1986)
- Kim JH, Yim YJ, J. Chem. Eng. Jpn., 32(2), 237 (1999)
- Brush PJ, Temperature Jump/Fourier transform Infrared Spectroscopy: A Noval Method for Investigation the Chemistry of a Burning Surface, University of Delaware (1993).
- Thynell ST, Gongwer PE, Brill TB, J. Propul. Power, 12(5), 933 (1996)
- Zhu YL, Huang H, Ren H, Jiao QJ, J. Energy Mater., 31, 178 (2013)