화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.3, 362-365, June, 2015
온도센서용 실리카에 담지된 ZnSe 양자점 소재
Silica-encapsulated ZnSe Quantum Dots as a Temperature Sensor Media
E-mail:
초록
본 연구에서는 polyoxyethylenenonylphenylether (NP5) 계면활성제와 sodium bis(2-ethylhexyl) sulfosuccinate (AOT) 계면활성제가 형성하는 두 종류의 W/O 마이크로에멀젼을 이용해서 실리카에 담지된 ZnSe 양자점을 제조하였다. 본 방법으로 3 nm 크기의 cubic zinc blende 결정 구조를 갖는 ZnSe 입자를 합성하였으며 약 20 nm 크기의 실리카 입자에 효과적으로 담지 시킬 수 있었다. 합성된 입자의 photoluminescence (PL) 주변 온도 의존성을 30 ℃에서 60 ℃ 범위에서 확인한 결과, 온도가 증가함에 따라 PL intensity가 감소하였으며 PL intensity와 온도와는 높은 상관관계를 나타내었다. 아울러 PL intensity와 온도의 상관관계는 온도를 낮은 곳에서 올려가며 측정한 경우와 반대로 낮추며 측정한 경우 같은 상관도를 나타내어 온도 의존성이 가역적임을 알 수 있었다. 그 결과 실리카에 담지된 ZnSe 양자점이 온도 센서로 사용될 수 있는 잠재적인 매체임을 확인하였다.
Silica encapsulated ZnSe quantum dots (QDs) were prepared by employing two microemulsion systems: AOT/water/cyclohexane microemulsions containing ZnSe quantum dots with NP5/water/cyclohexane microemulsions containing tetraethylorthosilicate (TEOS). Using this method, cubic zinc blende nanoparticles (3 nm in diameter) were synthesized and encapsulated by silica nanoparticles (20 nm in diameter). The temperature dependence of photoluminescence (PL) for silica-encapsulated ZnSe QDs was investigated to evaluate this material as a temperature sensor media. The fluorescence emission intensity of silica-encapsulated ZnSe nanoparticles (NPs) was decreased with an increase of ambient temperature over the range from 30 ℃ to 60 ℃ and a linear relationship between the temperature and the emission intensity was observed. In addition, the temperature dependence of PL intensity for silica-encapsulated ZnSe NPs showed a reversible pattern on ambient temperature. A reversible temperature dependence of the luminescence combined with its insensitivity toward quenching by oxygen due to silica coating established this material as an attractive media for temperature sensor applications.
  1. Yang Y, Zheng Y, Cao W, Titov A, Hyvonen J, Manders JR, Xue J, Holloway PH, Qian L, Nat. Photonics, 9, 259 (2015)
  2. Chuang P, Lin CC, Liu RS, ACS Appl. Mater. Interfaces, 6, 15379 (2014)
  3. Ahmed M, Guleria A, Rath MC, Singh AK, Adhikari S, Sarkar SK, J. Nanosci. Nanotechnol., 14, 5730 (2014)
  4. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A, Science, 298, 1759 (2002)
  5. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM, Nat. Biotechnol., 21, 47 (2003)
  6. Yang L, Xie RS, Liu LY, Xiao DQ, Zhu JG, J. Phys. Chem. C., 115, 19507 (2011)
  7. Kim HS, Kim JS, Park SJ, Jpn. J. Appl. Phys., 49, 06GJ08 (2010)
  8. Yang Y, Jing L, Yu X, Yan D, Gao M, Chem. Mater., 19, 4123 (2007)
  9. Darbandi M, Thomann R, Nann T, Chem. Mater., 17, 5720 (2005)
  10. Wilson WL, Szajowski PF, Brus LE, Science, 262, 1242 (1993)
  11. Mulvaney P, Liz-Marza’n LM, Giersig M, Ung T, J. Mater. Chem., 10, 1259 (2000)
  12. Selvan ST, Li CL, Ando M, Murase N, Chem. Lett., 33(4), 434 (2004)
  13. Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62 (1968)
  14. Wang Y, Niu SH, Zhang ZJ, Wang HT, Yuan CW, Fu DG, Chin. J. Chem. Phys., 20, 685 (2007)
  15. Liu K, Kim JH, Park SJ, Jpn. J. Appl. Phys., 52, 01AN01 (2013)
  16. Lee A, Kim JH, Yoo IS, Park SJ, Appl. Chem. Eng., 22(3), 328 (2011)
  17. Walker GW, Sundar VC, Rudzinski CM, Wun AW, Bawendi MG, Nocera DG, Appl. Phys. Lett., 83, 3555 (2003)
  18. Liu JW, Zhang Y, Ge CW, Jin YL, Hu SL, Gu N, Chin. Chem. Lett., 20, 977 (2009)
  19. Liu TC, Huang ZL, Luo QM, Anal. Chim. Acta, 559, 120 (2006)
  20. Vibin M, Vinayakan R, John A, Fernandez FB, Abraham A, Cancer Nano., 5, 1 (2014)