화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.24, No.11, 578-584, November, 2014
변형 폴리올 공정에서 pH에 따라 합성된 Sn 나노입자의 형상 변화 및 형성기구
Morphology and Formation Mechanism of Sn Nanoparticles Synthesized by Modified Polyol Process at Various pH Values
E-mail:
To synthesize Sn nanoparticles (NPs) less than 30 nm in diameter, a modified polyol process was conducted at room temperature using a reducing agent, and the effects of different pH values of the initial solutions on the morphology and size of the synthesized Sn NPs were analyzed. tin(II) 2-ethylhexanoate, diethylene glycol, sodium borohydride, polyvinyl pyrrolidone (PVP), and sodium hydroxide were used as a precursor, reaction medium, reducing agent, capping agent, and pH adjusting agent, respectively. It was found by transmission electron microscopy that the morphology of the synthesized Sn NPs varied according to the pH of the initial solution. Moreover, while the size decreased to 11.32 nm with an increase up to 11.66 of the pH value, the size increased rapidly to 39.25 nm with an increase to 12.69. The pH increase up to 11.66 dominantly promoted generation of electrons and increased the amount of initial nucleation in the solution, finally inducing the reducedsize of the Sn particles. However, the additional increase of pH dominantly induced a decrease of PVP by neutralization, which resulted in acceleration of the agglomeration by collisions between particles.
  1. Sun Y, Xia Y, Science, 298, 2176 (2002)
  2. Hu J, Odom TW, Lieber CM, Acc. Chem. Res., 32, 435 (1999)
  3. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ, Chem. Phys. Lett., 288(2-4), 243 (1998)
  4. Balan L, Schneider R, Billaud D, Ghanbaja J, Mater. Lett., 59(8-9), 1080 (2005)
  5. Yu H, Vuorinen V, Kivilahti JK, J. Electron. Mater., 36(2), 136 (2007)
  6. Zou CD, Gao YL, Yang B, XIA XZ, Zhai QJ, Andersson C, Liu J, J. Electron. Mater., 38(2), 351 (2008)
  7. Lin CY, Mohanty US, Chou JH, J. Alloy. Compd., 472(1-2), 281 (2009)
  8. Hsiao LY, Duh JG, Electron. Mater., 35(9), 1755 (2006)
  9. Jiang H, Moon KS, Hua F, Wong CP, Chem. Mater., 19(18), 4482 (2007)
  10. Zou C, Gao Y, Yang B, Zhai Q, J. Mater. Sci. -Mater. Electron., 21(10), 868 (2010)
  11. Glazer J, J. Electron. Mater., 23(8), 693 (1994)
  12. Arra M, Shangguan D, Xie D, Sundelin J, Lepisto T, Ristolainen E, J. Electron. Mater., 33(9), 977 (2004)
  13. Ormerod DH, Circuit World, 26(3), 11 (2000)
  14. Lai SL, Guo JY, Ramanath G, Allen LH, Phys. Rev. Lett., 77, 99 (1996)
  15. Jiang HJ, Moon KS, Dong H, Hua F, Wong CP, Chem. Phys. Lett., 429(4-6), 492 (2006)
  16. Jo YH, Jung I, Choi CS, Kim I, Lee HM, Nanotechnol., 22, 225701 (2011)
  17. Chieng BW, Loo YY, Mater. Lett., 73, 78 (2012)
  18. Xuan YM, Li Q, Hu WF, AIChE J., 49(4), 1038 (2003)
  19. JCPDS card No.86-2264.
  20. Zhang Z, Zhao B, Hu L, J. Solid State Chem., 121, 105 (1996)
  21. Chee SS, Lee JH, Electron. Mater. Lett., 8(1), 53 (2012)
  22. Magdassi S, Grouchko M, Kamyshny A, Materials, 3(9), 4626 (2010)
  23. Patterson AL, Phys. Rev., 56, 978 (1939)
  24. Chou KS, Ren CY, Mater. Chem. Phys., 64(3), 241 (2000)
  25. Mott D, Galkowski J, Wang LY, Luo J, Zhong CJ, Langmuir, 23(10), 5740 (2007)