화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.24, No.11, 604-609, November, 2014
저온에서 La2/3+xTiO3-δ (x = 0, 0.13)세라믹스의 전자전도특성
Low-Temperature Electron Transport Properties of La2/3+xTiO3-δ (x = 0, 0.13)
E-mail:
The thermoelectric power and dc conductivity of La2/3+xTiO3-δ (x = 0, 0.13) were investigated. The thermoelectric power was negative between 80K and 300K. The measured thermoelectric power of x = 0.13 increased linearly with increased temperatures and was represented by S0+BT. The x = 0 sample exhibited insulating behavior, while the x = 0.13 sample showed metallic behavior. The electric resistivity of x = 0.13 had a linear temperature dependence at high temperatures and a T3/2 dependence below about 100K. On the other hand, the electric resistivity of x = 0 has a linear relation between lnρ/T and 1/T in the range of 200 to 300K, and the activation energy for small polaron hopping was 0.23 eV. The temperature dependence of thermoelectric power and the resistivity of x = 0 suggests that the charge carriers responsible for conduction are strongly localized. This temperature dependence indicates that the charge carrier (x = 0) is an adiabatic small polaron. These experimental results are interpreted in terms of spin (x = 0.13) and small polaron (x = 0) hopping of almost localized Ti 3d electrons.
  1. Fujimori A, Hase I, Namatame M, Fujishima Y, Tokura Y, Phys. Rev. B, 46, 9841 (1992)
  2. Wekks BO, Birgeneau RJ, Chou FC, Endoh Y, Johnston DC, Kastner MA, Lee YS, Shirane G, Tranquada JM, Yamada K, Z. Phys. B., 100, 536 (1996)
  3. Jhans H, Kim D, Rasmussen RJ, Honig JM, Phys. Rev. B, 54, 11224 (1996)
  4. Ju HL, Eylem C, Peng JL, Eichhorn BW, Greene RL, Phys. Rev. B, 49, 133335 (1994)
  5. Onoda M, Yasumoto M, J. Phys. Condens. Matter, 9, 3861 (1997)
  6. OnodaA M, Yasumoto M, J. Phys. Condens. Matter, 9, 5623 (1997)
  7. Crandles DA, Timusk T, Garrette JD, Greedan JE, Physica C, 201, 407 (1992)
  8. Tokura Y, Taguchi Y, Okada Y, Fujishima Y, Arima T, Kumagai K, Iye Y, Phys. Rev. Lett., 70, 2126 (1993)
  9. Shanthi N, Sarma DD, Phys. Rev. B, 57, 2153 (1998)
  10. Kim IS, Itoh M, Nakamura T, J. Solid State Chem., 101, 77 (1992)
  11. Jung WH, Wakai H, Nakatsugawa H, Iguchi E, J. Appl. Phys., 88, 2560 (2000)
  12. Jung WH, J. Phys. Condens. Matter, 10, 8553 (1998)
  13. Yoshii K, J. Solid State Chem., 149, 354 (2000)
  14. Abe M, Uchino K, Mater. Res. Bull., 9, 147 (1974)
  15. Kim IS, Nakamura T, Inagama Y, Itoh M, J. Solid State Chem., 113, 281 (1994)
  16. Ohtaki M, Ogura D, Eguchi K, Arai H, J. Mater. Chem., 4, 653 (1994)
  17. Pal S, Banerjee A, Rozenberg E, Chauduri BK, J. Appl. Phys., 89, 4599 (2001)
  18. Jakob G, Westerburg W, Martin F, Adrian H, Phys. Rev. B, 58, 14966 (1998)
  19. Holstein T, Ann. Phys., 8, 343 (1969)
  20. Emin D, Holstein T, Ann. Phys., 53, 439 (1969)
  21. Austin IG, Mott NF, Adv. Phys., 18, 41 (1969)
  22. Jung WH, Korean J. Mater. Res., 18(1), 26 (2008)
  23. Jung WH, Korean J. Mater. Res., 18(4), 175 (2008)
  24. Jung WH, Korean J. Mater. Res., 19(4), 186 (2009)
  25. Jung WH, Korean J. Mater. Res., 20(3), 161 (2010)
  26. Jung WH, Korean J. Mater. Res., 21(7), 377 (2011)
  27. Amow G, Raju NP, Greeden JE, J. Solid State Chem., 155, 177 (2000)
  28. Blasco J, Garcia J, J. Phys. Condens. Matter, 6, 10759 (1994)
  29. Blasco J, Garcia J, J. Phys. Condens. Matter, 6, 5875 (1994)
  30. Mott NF, Adv. Phys., 39, 55 (1990)
  31. Mott NF, J. Phys. Condens. Matter, 5, 3487 (1993)
  32. Sreedhar K, Honig JM, Darwin M, McElfresh M, Shand PM, Xu J, Crooker BC, Spalek J, Phys. Rev. B, 46, 6382 (1992)
  33. River N, Adkins K, J. Phys F. -Met Phys., 5, 1745 (1975)
  34. Ford PJ, Mydosh JA, Phys. Rev. B, 14, 2057 (1976)
  35. Gayathri N, Raychaudhuri AK, XU XQ, Peng JL, Greene RL, J. Phys. Condens. Matter, 10, 1323 (1998)
  36. Wood C, Emin D, Phys. Rev. B, 29, 4582 (1984)
  37. Hundley MF, Neumeier JJ, Phys. Rev. B, 55, 11511 (1997)
  38. Coey JMD, Viret M, Von Molnar S, Adv. Phys., 48, 167 (1999)