화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.25, No.1, 43-47, January, 2015
Gas Absorption and Release Properties of Zn(BH4)2 and MgH2-Zn(BH4)2-Ni-Ti-Fe Alloy
E-mail:
Zn(BH4)2 was prepared by milling ZnCl2 and NaBH4 in a planetary ball mill in an Ar atmosphere, and XRD analysis, SEM observation, FT-IR analysis, DTA, and TGA were performed for synthesized Zn(BH4)2 samples. 90 wt% MgH2+1.67 wt% Zn(BH4)2(+NaCl)+5 wt% Ni+1.67 wt% Ti+1.67 wt% Fe (named 90MgH2+1.67Zn(BH4)2(+NaCl)+5Ni+1.67Ti+1.67Fe) samples were also prepared by milling in a planetary ball mill in an H2 atmosphere. The gas absorption and release properties of the Zn(BH4)2(+NaCl) and 90MgH2+1.67Zn(BH4)2(+NaCl)+5Ni+1.67Ti+1.67Fe samples were investigated. An FT-IR analysis showed that Zn(BH4)2 formed in the Zn(BH4)2(+NaCl) samples prepared by milling ZnCl2 and NaBH4. At the first cycle at 320 oC, 90MgH2+1.67Zn(BH4)2(+NaCl)+5Ni+1.67Ti+1.67Fe absorbed 2.95 wt% H for 2.5 min and 4.93 wt% H for 60 min under 12 bar H2, and released 1.46 wt% H for 10 min and 4.57 wt% H for 60 min under 1.0 bar H2.
  1. Song MY, Kwak YJ, Lee SH, Park HR, Korean J. Met. Mater., 51, 119 (2013)
  2. Kim KI, Hong TW, Korean J. Met. Mater., 49(3), 264 (2011)
  3. Song MY, Kwak YJ, Lee SH, Park HR, Met. Mater. Int., 19(4), 879 (2013)
  4. Reilly JJ, Wiswall RH, Inorg. Chem., 6(12), 2220 (1967)
  5. Reilly JJ, Wiswall RH, Inorg. Chem., 7(11), 2254 (1968)
  6. Akiba E, Nomura K, Ono S, Suda S, Int. J. Hydrog. Energy, 7(10), 787 (1982)
  7. Li ZN, Liu XP, Jiang LJ, Wang SM, Int. J. Hydrog. Energy, 32(12), 1869 (2007)
  8. Boulet JM, Gerard N, J. Less-Common Met., 89, 151 (1983)
  9. Li Z, Liu X, Huang Z, Jiang L, Wang S, Rare Metals, 25(6), 247 (2006)
  10. Zuttel A, Rentsch S, Fisher P, Wenger P, Sudan P, Mauron P, Emmenegger C, J. Alloy. Compd., 356-357, 515 (2003)
  11. Orimo S, Nakamori Y, Zuttel A, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 108, 51 (2004)
  12. Hagemann H, Gomes S, Renaudin G, Yvon K, J. Alloy. Compd., 363, 129 (2004)
  13. Renaudin G, Gomes S, Hagemann H, Keller L, Yvon K, J. Alloy. Compd., 375, 98 (2004)
  14. Yoshino M, Komiya K, Takahashi Y, Shinzato Y, Yukawa H, Morinaga M, J. Alloy. Compd., 404-406, 185 (2005)
  15. Orimo S, Nakamori Y, Kitahara G, Miwa K, Ohba N, Towata S, Zuttel A, J. Alloy. Compd., 404-406, 427 (2005)
  16. Kang JK, Kim SY, Han YS, Muller RP, Goddard III WA, Appl. Phys. Lett., 87, 111904 (2005)
  17. Kumar RS, Cornelius AL, Appl. Phys. Lett., 87, 261916 (2005)
  18. Nakamori Y, Miwa K, Ninomiya A, Li HW, Ohba N, Towata S, Zuttel A, Orimo S, Phys. Rev. B, 74, 045126 (2006)
  19. Nakamori Y, Li HW, Miwa K, Towata S, Orimo S, Mater. Trans., 47, 1898 (2006)
  20. Nakagawa T, Ichikawa T, Kojima Y, Fujii H, Mater. Trans., 48(3), 556 (2007)
  21. Mikheeva VI, Naltseva NN, Alekseeva LS, Zh. Neorg. Khim., 13, 1301 (1968)
  22. Jeon E, Cho YW, J. Alloy. Compd., 422, 273 (2006)
  23. Jeon E, Cho YW, Trans. Korean Hydrogen New Energy Soc., 16(3), 262 (2005)
  24. Song MY, Pezat M, Darriet B, Hagenmuller P, J. Mater. Sci., 20, 2958 (1985)
  25. Kwak YJ, Lee SH, Park HR, Song MY, Korean J. Met. Mater., 51(8), 607 (2013)