화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.25, No.3, 125-131, March, 2015
F-Doped SnO2 Thin Film/Ag Nanowire 이중층의 전기적 및 광학적 특성
Electrical and Optical Properties of F-Doped SnO2 Thin Film/Ag Nanowire Double Layers
E-mail:,
Fluorine-doped SnO2 (FTO) thin film/Ag nanowire (NW) double layers were fabricated by means of spin coating and ultrasonic spray pyrolysis. To investigate the optimum thickness of the FTO thin films when used as protection layer for Ag NWs, the deposition time of the ultrasonic spray pyrolysis process was varied at 0, 1, 3, 5, or 10 min. The structural, chemical, morphological, electrical, and optical properties of the double layers were examined using X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, the Hall effect measurement system, and UV-Vis spectrophotometry. Although pure Ag NWs formed isolated droplet-shaped Ag particles at an annealing temperature of 300 oC, Ag NWs covered by FTO thin films maintained their high-aspect-ratio morphology. As the deposition time of the FTO thin films increased, the electrical and optical properties of the double layers degraded gradually. Therefore, the double layer fabricated with FTO thin films deposited for 1 min exhibited superb sheet resistance (~14.9Ω/□), high optical transmittance (~88.6 %), the best FOM (~19.9 × 10.3 Ω.1), and excellent thermal stability at an annealing temperature of 300 oC owing to the good morphology maintenance of the Ag NWs covered by FTO thin films.
  1. Madaria AR, Kumar A, Zhou C, Nanotechnology, 22, 245201 (2011)
  2. Oh BY, Jeong MC, Moon TH, Lee W, Myoung JM, Hwang JY, Seo DS, J. Appl. Phys., 99, 124505 (2006)
  3. Eritt M, May C, Leo K, Toerker M, Radehaus C, Thin Solid Films, 518(11), 3042 (2010)
  4. Brabec CJ, Sol. Energy Mater. Sol. Cells, 83(2-3), 273 (2004)
  5. Chen TL, Ghosh DS, Formica N, Pruneri V, Nanotechnology, 23, 395603 (2012)
  6. Leem DS, Edwards A, Faist M, Nelson J, Bradley DDC, de Mello JC, Adv. Mater., 23(38), 4371 (2011)
  7. Lu YC, Chou KS, Nanotechnology, 21, 215707 (2010)
  8. Kim A, Won Y, Woo K, Kim CH, Moon J, ACS Nano, 7, 1081 (2013)
  9. Choi KH, Kim J, Noh YJ, Na SI, Kim HK, Sol. Energy Mater. Sol. Cells, 110, 147 (2013)
  10. Ahn Y, Jeong Y, Lee Y, ACS Appl. Mater. Interfaces, 4, 6410 (2012)
  11. Nakaruk A, Ragazzon D, Sorrell CC, Thin Solid Films, 518(14), 3735 (2010)
  12. Singh P, Kumar A, Deepak, Kaur D, J. Cryst. Growth, 306(2), 303 (2007)
  13. Noh SI, Ahn HJ, Riu DH, Ceram. Int., 38, 3735 (2012)
  14. Shanthi E, Dutta V, Banerjee A, Chopra KL, J. Appl. Phys., 51, 6243 (1980)
  15. Cho CW, Lee JH, Riu DH, Kim CY, Jpn. J. Appl. Phys., 51, 045001 (2012)
  16. Ikhmayies SJ, Ahmad-Bitar RN, Mater. Sci. Semicond. Process, 12, 122 (2009)
  17. Miao D, Zhao Q, Wu S, Wang Z, Zhang X, Zhao X, J. Non-Cryst. Solids, 356, 2557 (2010)
  18. Samad WZ, Salleh MM, Shafiee A, Yarmo MA, Sains Malaysiana, 40, 251 (2011)
  19. Koo BR, Ahn HJ, Appl. Phys. Express, 7, 075002 (2014)
  20. Nakagawara O, Kishimoto Y, Seto H, Koshido Y, Yoshino Y, Makino T, Appl. Phys. Lett., 89, 091904 (2006)
  21. Yu S, Zhang W, Li L, Xu D, Dong H, Jin Y, Acta Mater., 61, 5429 (2013)
  22. Liu J, Hains AW, Servaites JD, Ratner MA, Marks TJ, Chem. Mater., 21, 5258 (2009)