화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.25, No.3, 144-148, March, 2015
Hydrothermal Synthesis of Cubic Mesocrystal CeO2 for Visible Photocatalytic Degradation of Rhodamine B
E-mail:,
Cubic mesocrystal CeO2 was synthesized via a hydrothermal method with glutamic acid (C5H9NO4) as a template. The XRD pattern of a calcined sample shows the face-centered cubic fluorite structure of ceria. Transmission electron microscopy (TEM) and the selected-area electron diffraction (SAED) pattern revealed that the submicron cubic mesocrystals were composed of many small crystals attached to each other with the same orientation. The UV-visible adsorption spectrum exhibited the red-shift phenomenon of mesocrystal CeO2 compared to commercial CeO2 particles; thus, the prepared materials show tremendous potential to degrade organic dyes under visible light illumination . With a concentration of a rhodamine B solution of 20 mg/L and a catalyst amount of 0.1 g/L, the reaction showed higher photocatalytic performance following irradiation with a xenon lamp (≥ 380 nm). The decoloring rate can exceed 100% after 300 min.
  1. Xu DY, Cheng F, Lu QZ, Dai P, Ind. Eng. Chem. Res., 53(7), 2625 (2014)
  2. Karunakaran C, Gomathisankar P, ACS Sustainable Chem. Eng., 1, 1555 (2013)
  3. Leonard KC, Nam KM, Lee HC, Kang SH, Park HS, Bard AJ, J. Phys. Chem. C, 117, 15901 (2013)
  4. Trotochaud L, Mills TJ, Boettcher SW, J. Phys. Chem. Lett., 4, 931 (2013)
  5. Khan SB, Faisal M, Rahman MM, Jamal A, Sci. Total Environ., 409, 2987 (2011)
  6. Qian J, Chen Z, Liu C, Lu X, Wang F, Wang M, Mater. Sci. Semicond. Process, 25, 27 (2014)
  7. Lu XW, Li XZ, Qian JC, Chen ZG, Powder Technol., 239, 415 (2013)
  8. Qian J, Liu C, Chen F, Chen Z, Zhang Y, Wang M, Asian J. Chem., 26(5), 1376 (2014)
  9. Liu XW, Zhou KB, Wang L, Wang BY, Li YD, J. Am. Chem. Soc., 131(9), 3140 (2009)
  10. Shuller-Nickles LC, Ewing RC, Becker U, J. Solid State Chem., 197, 550 (2013)
  11. Wetchakun N, Chaiwichain S, Inceesungvorn B, Pingmuang K, Phanichphant S, Minett AI, Chen J, ACS Appl. Mater. Interfaces, 4, 3718 (2012)
  12. Yu R, Yan L, Zheng P, J. Phys. Chem. C, 112, 19896 (2008)
  13. Qian J, Chen Z, Liu C, Wang F, Zhang Y, Wang M, Chin. Sci. Bull., 59(26), 3260 (2014)
  14. Niederberger M, Colfen H, Phys. Chem. Chem. Phys., 8, 3271 (2006)
  15. Fang J, Dinga B, Gleiterb H, Chem. Soc. Rev., 40, 5347 (2011)
  16. Geng X, Liu L, Jiang J, Yu S, Cryst. Growth Des., 10, 3448 (2010)
  17. Mo MS, Lim SH, Mai YW, Zheng RK, Ringer SP, Adv. Mater., 20(2), 339 (2008)
  18. Lu XW, Li XZ, Chen F, Ni CY, Chen ZG, J. Alloy. Compd., 476, 958 (2009)
  19. Li XZ, Ni CY, Chen F, Lu XW, Chen ZG, J. Solid State Chem., 182, 2185 (2009)
  20. Feng XD, Sayle DC, Wang ZL, Paras MS, Santora B, Sutorik AC, Sayle T, Yang Y, Ding Y, Wang XD, Her YS, Science, 312, 1504 (2006)
  21. Kaneko K, Inoke K, Freitag B, Hungria AB, Midgley PA, Hansen TW, Zhang J, Ohara S, Adschiri T, Nano Lett., 7, 421 (2007)
  22. Wang ZL, Feng XD, J. Phys. Chem. B, 107(49), 13563 (2003)
  23. Li QL, Zhang YH, Chen GX, Fan JQ, Lan HQ, Yang YQ, J. Catal., 273(2), 167 (2010)
  24. Chen Y, Liu T, Chen C, Guo W, Sun R, Lv S, Saito M, Tsukimoto S, Wang Z, Ceram. Int., 39, 6607 (2013)
  25. Liu XW, Zhou KB, Wang L, Wang BY, Li YD, J. Am. Chem. Soc., 131(9), 3140 (2009)
  26. Chaudhary YS, Panigrahi S, Nayak S, Satpati B, Bhattacharjeea S, Kulkarnic N, J. Mater. Chem., 20, 2381 (2010)