화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.25, No.5, 238-246, May, 2015
산화구리 나노선 센서의 황화수소 감지특성
Detection of H2S Gas with CuO Nanowire Sensor
E-mail:
H2S is a flammable toxic gas that can be produced in plants, mines, and industries and is especially fatal to human body. In this study, CuO nanowire structure with high porosity was fabricated by deposition of copper on highly porous singlewall carbon nanotube (SWCNT) template followed by oxidation. The SWCNT template was formed on alumina substrates by the arc-discharge method. The oxidation temperatures for Cu nanowires were varied from 400 to 800 oC. The morphology and sensing properties of the CuO nanowire sensor were characterized by FESEM, Raman spectroscopy, XPS, XRD, and currentvoltage examination. The H2S gas sensing properties were carried out at different operating temperatures using dry air as the carrier gas. The CuO nanowire structure oxidized at 800 oC showed the highest response at the lowest operating temperature of 150 oC. The optimum operating temperature was shifted to higher temperature to 300 oC as the oxidation temperature was lowered. The results were discussed based on the mechanisms of the reaction with ionosorbed oxygen and the CuS formation reaction on the surface.
  1. Reiffenstein RJ, Hulbert WC, Roth SH, Annu. Rev. Pharmacol. Toxicol., 32(1), 109 (1992)
  2. Patnaik P, A comprehensive guide to the hazardous properties of chemical substances, 3th ed., p.407, John Wiley & Sons., Wiley, USA (2007).
  3. Baxter PJ, Aw TC, Cockcroft A, Durrington P, Harrington JM, Hunter's diseases of occupations, 10th ed., p.292, CRC Press., CRC, USA (2010).
  4. Liu H, Gong SP, Hu YX, Liu JQ, Zhou DX, Sens. Actuators B-Chem., 140(1), 190 (2009)
  5. Liu H, Gong S, Hu Y, Zhao J, Liu J, Zheng Z, Zhou D, Chem. Int., 35(3), 961 (2009)
  6. Zhang N, Yu K, Li Q, Zhu ZQ, Wan Q, Jpn. J. Appl. Phys., 103(10), 104305 (2008)
  7. Kim J, Yong K, J. Phys. Chem. C, 115(15), 7218 (2011)
  8. Rout CS, Hegde M, Rao CNR, Sens. Actuators B-Chem., 128(2), 488 (2008)
  9. Reyes LF, Hoel A, Saukko S, Heszler P, Lantto V, Granqvist CG, Sens. Actuators B-Chem., 117(1), 128 (2006)
  10. Ionescu R, Hoel A, Granqvist CG, Llobet E, Heszler P, Sens. Actuators B-Chem., 104(1), 132 (2005)
  11. Kapse VD, Ghosh SA, Chaudhari GN, Raghuwanshi FC, Talanta, 76(3), 610 (2008)
  12. Kaur M, Jain N, Sharma K, Bhattacharya S, Roy M, Tyagi AK, Gupta SK, Yakhmi JV, Sens. Actuators B-Chem., 133(2), 456 (2008)
  13. Bari RH, Patil SB, Bari AR, Int. Nano Lett., 3(1), 1 (2013)
  14. Vikas P, Datta J, Shailesh P, Manik C, Prsad G, Sanjay P, Bhara R, Shashwati S, J. Sens. Technol., 1(2), 36 (2011)
  15. Zhang F, Zhu A, Luo Y, Tian Y, Yang J, Qin Y, J. Phys. Chem. C, 114(45), 19214 (2010)
  16. Shen Y, Guo M, Xia X, Shao G, Acta Mater., 85, 122 (2015)
  17. Liao L, Zhang Z, Yan B, Zheng Z, Bao QL, Wu T, Li CM, Shen ZX, Zhang JX, Gong H, Li JC, Yu T, Nanotechnology, 20(8), 085203 (2009)
  18. Chen XK, Irwin JC, Franck JP, Phys. Rev., B, Condens. Matter, 52(18), R13130 (1995)
  19. Xu JF, Ji W, Shen ZX, Li WS, Tang SH, Ye XR, Jia DZ, Xin XQ, J. Raman Spectrosc., 30(5), 413 (1999)
  20. Zhang WF, He YL, Zhang MS, Yin Z, Chen QJ, J. Phys. D-Appl. Phys., 33(8), 912 (2000)
  21. Hoa ND, Van Quy N, Cho Y, Kim D, Sens. Actuators B-Chem., 135(2), 656 (2009)
  22. Han S, Chen HY, Chu YB, Shih HC, J. Vac. Sci. Technol. B, 23(6), 2557 (2005)
  23. Park J, Lim K, Ramsier RD, Kang YC, Bull. Korean Chem. Soc., 32(9), 3395 (2011)
  24. Comini E, Faglia G, Sberveglieri G, Solid State Gas Sensing., p.64., Springer, New York (2009).
  25. Hoa ND, Van Quy N, Jung H, Kim D, Kim H, Hong SK, Sens. Actuators B-Chem., 146(1), 266 (2010)
  26. Steinhauer S, Brunet E, Maier T, Mutinati GC, Kock A, Sens. Actuators B-Chem., 186, 550 (2013)
  27. Xue X, Xing L, Chen Y, Shi S, Wang Y, Wang T, J. Phys. Chem. C, 112(32), 12157 (2008)
  28. Kong X, Li Y, Sens. Actuators B-Chem., 105(2), 449 (2005)
  29. Zhou X, Cao Q, Huang H, Yang P, Hu Y, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 99(1), 44 (2003)