Korean Journal of Chemical Engineering, Vol.32, No.7, 1249-1257, July, 2015
Effects of membrane characteristics on performances of pressure retarded osmosis power system
E-mail:
Effects of the characteristics of membrane such as water permeability-coefficient, solute permeability-coefficient, and membrane resistivity on the performances of the spiral wound module in the PRO system have been studied numerically. Fluxes of water and solute through membrane, and concentrations and flow rates in the channels were obtained. The water flux through membrane increases almost linearly with the water permeability-coefficient, but it is insensitive to the solute permeability-coefficient. Decreasing the membrane resistivity makes the water flux through membrane and the power density increase. Effects of the membrane resistivity on the water flux through membrane and flow rates in the channels are small when the difference between the inlet-pressures of draw- and feed-channel is large and vice versa. The power density increases and then decreases as the channel-inlet pressure difference increases. The maximum power density is 16 W/m2 at 14 atm of the channel-inlet pressure difference in our system.
Keywords:Pressure Retarded Osmosis (PRO);Water Permeability Coefficient;Solute Permeability Coefficient;Membrane Resistivity;Water Flux;Power Density
- Jones AT, Rowley W, Mater. Technol. Soc. J., 36, 85 (2003)
- Yip NY, Elimelech M, Environ. Sci. Technol., 46, 5230 (2011)
- Yip NY, Elimelech M, Environ. Sci. Technol., 45, 10273 (2011)
- Thorsen T, Holt T, J. Membr. Sci., 335(1-2), 103 (2009)
- Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Hoover LA, Kim YC, Elimelech M, Environ. Sci. Technol., 45, 4360 (2011)
- Kim KS, Ryoo W, Chun MS, Chung GY, Lee SO, Korean J. Chem. Eng., 29(2), 162 (2012)
- Kim KS, Ryoo W, Chun MS, Chung GY, Desalination, 318, 79 (2013)
- Alsvik IL, Hagg MB, Polymer, 5, 303 (2013)
- Pattle RE, Nature, 174, 660 (1954)
- Achilli A, Childress AE, Desalination, 261(3), 205 (2010)
- Gerstandt K, Peinemann KV, Skilhagen SE, Thorsen T, Holt T, Desalination, 224(1-3), 64 (2008)
- Statkraft osmotic power prototype plant design, 21. Dec. 2013, (http://www.statkraft.com/energy-sources/osmotic-power/prototype/pant-design.aspx).
- Achilli A, Cath TY, Childress AE, J. Membr. Sci., 343(1-2), 42 (2009)
- Sundaramoorthy S, Srinivasan G, Murthy DVR, Desalination, 280(1-3), 403 (2011)
- Hong SS, Ryoo W, Chun MS, Lee SO, Chung GY, Desalin. Water Treat., 52, 6333 (2014)
- Hong SS, Ryoo W, Chun MS, Chung GY, Korean Chem. Eng. Res., 52(1), 68 (2014)
- Cath TY, Childress AE, Elimelech M, J. Membr. Sci., 281(1-2), 70 (2006)
- Phillip WA, Yong JS, Elimelech M, Environ. Sci. Technol., 44, 5170 (2010)
- Schwinge J, Neal PR, Wiley DE, Fletcher DF, Fane AG, J. Membr. Sci., 242(1-2), 129 (2004)
- Hwang ST, Korean J. Chem. Eng., 28(1), 1 (2011)
- Lee KL, Baker RW, Lonsdale HK, J. Membr. Sci., 8, 141 (1981)
- McCutcheon JR, Elimelech M, AIChE J., 53(7), 1736 (2007)
- You Y, Huang S, Yang Y, Liu C, Wu Z, Yu X, Adv. Computer Sci. Eng., 141, 307 (2012)
- She QH, Jin X, Tang CYY, J. Membr. Sci., 401, 262 (2012)
- Kim S, Hoek EMV, Desalination, 186(1-3), 111 (2005)
- Kim YC, Kim Y, Oh DW, Lee KH, Environ. Sci. Technol., 47, 2966 (2013)
- Senthilmurugan S, Ahluwalia A, Gupta SK, Desalination, 173(3), 269 (2005)
- Sundaramoorthy S, Srinivasan G, Murthy DVR, Desalination, 277(1-3), 257 (2011)
- Hung LY, Lue SJ, You JH, Desalination, 265(1-3), 67 (2011)