Korean Journal of Chemical Engineering, Vol.32, No.7, 1327-1332, July, 2015
Combination of TiO2-photocatalytic process and biological oxidation for the treatment of textile wastewater
E-mail:
We did a comparative kinetic study of biological oxidation of textile wastewater in an activated sludge, an activated sludge immobilized on biofilm, and a combination of TiO2 photocatalytic process and moving bed reactor biofilm system. Combining photocatalysis with a biological treatment could be a good strategy to remove non-biodegradable compounds. Mathematical models such as Grau second-order and modified Stover-Kincannon kinetic models were applied to determine the kinetic coefficients of COD removal process in biological treatment. The kinetic coefficients were determined by linear regression based on the experimental data. The results showed that the photocatalysis pretreatment of refractory compounds has a positive effect on the obtained kinetic parameters. As a result, COD content and color of wastewater were decreased; however, the saturation value constant and maximum utilization rate of the modified Stover-Kincannon kinetic models (by 63%) were increased relative to untreated wastewater by TiO2 as a pretreatment.
- Ledakowicz S, Solecka M, Zylla R, J. Biotechnol., 89, 175 (2001)
- Alinsafi A, Evenou F, Abdulkarim EM, Pons MN, Zahraa O, Benhammou A, Yaacoubi A, Nejmeddine A, Dyes Pigment., 74, 439 (2007)
- Barka N, Abdennouri M, Makhfouk MEL, J. Taiwan. Inst. Chem. Eng., 42, 320 (2011)
- Ghoreishi SM, Haghighi R, Chem. Eng. J., 95(1-3), 163 (2003)
- Yu CH, Wu CH, Ho TH, Hong PKA, Chem. Eng. J., 158(3), 578 (2010)
- Hossain M, Mahmud I, Parvez S, Cho HM, Environ. Eng. Res., 18, 157 (2013)
- Steber J, Wierich P, Chemosphere, 15, 929 (1986)
- Adams CD, Spitzer S, Cowan R, J. Environ. Eng., 122, 477 (1996)
- Lapertot M, Pulgarin C, Fernandez-Ibanez P, Maldonado MI, Perez-Estrada L, Oller I, Gernjak W, Malato S, Water Res., 40, 1086 (2006)
- Oller I, Malato S, Sanchez-Perez JA, Sci. Total Environ., 409, 4141 (2011)
- Yahiat S, Fourcade F, Brosillon S, Amrane A, Desalination, 281, 61 (2010)
- Botia DC, Rodriguez MS, Sarria VM, Chemosphere, 89, 732 (2012)
- Park JY, Lee IH, Korean J. Chem. Eng., 26(2), 387 (2009)
- Choi JW, Song HK, Lee W, Koo KK, Han C, Na BK, Korean J. Chem. Eng., 21(2), 398 (2004)
- Figueroa S, Vazquez L, Alvarez-Gallegos A, Water Res., 43, 283 (2009)
- Kim YO, Nam HU, Park YR, Lee JH, Park TJ, Lee TH, Korean J. Chem. Eng., 21(4), 801 (2004)
- Martins AF, Wilde ML, Silveira CD, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 41, 675 (2006)
- Thiruvenkatachari R, Vigneswaran S, Moon IS, Korean J. Chem. Eng., 25(1), 64 (2008)
- Parida KM, Sahu N, Biswal NR, Naik B, Pradhan AC, J. Colloid Interface Sci., 318(2), 231 (2008)
- Aguedach A, Brosillon S, Morvan J, Lhadi EK, Appl. Catal. B: Environ., 57(1), 55 (2005)
- Goel M, Chovelon JM, Ferronato C, Bayard R, Sreekrishnan TR, J. Photochem. Photobiol. B-Biol., 98, 1 (2010)
- Hussein FH, Abass TA, Int. J. Chem. Sci., 8, 1409 (2010)
- Srinivasan SV, Mary GP, Kalyanaraman C, Sureshkumar PS, Balakameswari KS, Suthanthararajan R, Ravindranath E, Clean Technol. Environ. Policy, 14, 251 (2012)
- Chen CY, Kuo JT, Yang HA, Chung YC, Chemosphere, 92, 695 (2013)
- Marsolek MD, Kirisits MJ, Gray KA, Rittmann BE, Water Res., 50, 59 (2014)
- Chebli D, Fourcade F, Brosillon S, Nacef S, Amrane A, Environ. Technol., 32, 507 (2011)
- Heijnen JJ, Delft University Press (1984).
- M. a. E. Inc., Wastewater Engineering, Disposal & Reuse, McGraw-Hill, New York (2003).
- Greenberg AE, Clesceri LS, Eaton AD, Standard Methods for Examination of Water and Wastewater, Washington D.C. (1992).
- Grau P, Dohanyas M, Chudoba J, Water Res., 9, 637 (1975)
- Borghei SM, Sharbatmaleki M, Pourrezaie P, Borghei G, Bioresour. Technol., 99(5), 1118 (2008)
- Shin D, Shin W, Kim Y, Choi S, Water Sci. Technol., 54, 181 (2006)
- Rodriguez M, Sarria V, Esplugas S, Pulgarin C, J. Photochem. Photobiol. A-Chem., 151, 129 (2002)