화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.23, 72-78, March, 2015
Structural characterization of the solid residue produced by hydrothermal treatment of sunflower stalks and subsequent enzymatic hydrolysis
E-mail:
This study was to structurally characterize solid residues obtained from sunflower stalks hydrothermally treated at 180 and 200 °C for 30 min, followed by enzymatic hydrolysis. Recovered solid residue were 25.3% and 24.1% of fresh biomass, respectively. Each ethanol soluble fraction could be obtained up to 30% of the solid residue. The fraction from the solid residue at 200 °C was composed of smaller-sized lignin macromolecules with higher phenolic hydroxyl group, but lower aliphatic hydroxyl due to enhanced cleavage reactions related to side chain and aryl ether linkages of lignin, compared to that of the solid residue at 180 °C.
  1. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ, Bioresour. Technol., 101(13), 4851 (2010)
  2. Punda I, Investment Centre Division, Sunflower Crude and Refined Oils, Agribusiness Handbook, Italy, 2010.
  3. Diaz MJ, Cara C, Ruiz E, Perez-Bonilla M, Castro E, Fuel, 90(11), 3225 (2011)
  4. Ruiz E, Cara C, Manzanares P, Ballesteros M, Castro E, Enzyme Microb. Technol., 42(2), 160 (2008)
  5. Jung CD, Yu JH, Eom IY, Hong KS, Bioresour. Technol., 138, 1 (2013)
  6. Hu ZJ, Ragauskas AJ, Ind. Eng. Chem. Res., 50(8), 4225 (2011)
  7. Kaparaju P, Felby C, Bioresour. Technol., 101(9), 3175 (2010)
  8. Larsen J, Haven MO, Thirup L, Biomass Bioenerg., 46, 36 (2012)
  9. Brunow G, Lundquist K, in: Heitner C, Dimmel DR, Schmidt JA (Eds.), Functional Groups and Bonding Patterns in Lignin (Including the Lignin-Carbohydrate Complexes), CRC Press, Florida, 2010, p. 267.
  10. Gosselink RJA, Teunissen W, van Dam JEG, de Jong E, Gellerstedt G, Scott EL, Sanders JPM, Bioresour. Technol., 106, 173 (2012)
  11. Pandey MP, Kim CS, Chem. Eng. Technol., 34(1), 29 (2011)
  12. Ramires EC, Megiatto JD, Gardrat C, Castellan A, Frollini E, Biotechnol. Bioeng., 107(4), 612 (2010)
  13. Tejado A, Pena C, Labidi J, Echeverria JM, Mondragon I, Bioresour. Technol., 98(8), 1655 (2007)
  14. Hage RE, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas AJ, Polym. Degrad. Stabil., 94, 1632 (2009)
  15. Hage RE, Brosse N, Sannigrahi P, Ragauskas AJ, Polym. Degrad. Stabil., 95, 997 (2010)
  16. Nagy M, David K, Britovsek GJP, Ragauskas AJ, Holzforschung, 63, 513 (2009)
  17. Xu W, Miller SJ, Agrawal PK, Jones CW, ChemSusChem, 2, 667 (2012)
  18. Liu CG, Wyman CE, Bioresour. Technol., 96(18), 1978 (2005)
  19. Buranov AU, Ross KA, Mazza G, Bioresour. Technol., 101(19), 7446 (2010)
  20. Ropponen J, Rasanen L, Rovio S, Ohra-aho T, Liitia T, Mikkonen H, van de Pas D, Tamminen T, Holzforschung, 65, 543 (2011)
  21. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Determination of Ash in Biomass, Technical Report National Renewable Energy Laboratory NREL/TP-510-42622, ed. Golden, CO, 2008.
  22. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton DD, Crocker Determination of Structural Carbohydrates and Lignin in, Technical Report NREL/TP-510-42618, ed. Golden, CO, 2008.
  23. Pu Y, Cao S, Ragauskas AJ, Energy Environ. Sci., 4, 3154 (2011)
  24. Kim JY, Oh S, Hwang H, Kim UJ, Choi JW, Polym. Degrad. Stabil., 98, 1671 (2013)
  25. Jakab E, Faix O, Till F, J. Anal. Appl. Pyrolysis, 40-41, 171 (1997)
  26. Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB, Biotechnol. Bioeng., 101(5), 913 (2008)
  27. Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ, Biotechnol. Bioeng., 6, 15 (2013)
  28. Doherty WOS, Mousavioun P, Fellows CM, Ind. Crop. Prod., 33, 259 (2011)
  29. Hu G, Cateto C, Pu YQ, Samuel R, Ragauskas AJ, Energy Fuels, 26(1), 740 (2012)
  30. Kumar R, Mago G, Balan V, Wyman CE, Bioresour. Technol., 100(17), 3948 (2009)
  31. Sun RC, Tomkinson J, Jones GL, Polym. Degrad. Stabil., 68, 111 (2000)