Journal of Industrial and Engineering Chemistry, Vol.23, 194-199, March, 2015
Hypercross-linked lignite for NOx and CO2 sorption
E-mail:
We are reporting for first time, hypercross-linking of lignite for the sorption of NOx and CO2. Hypercross-linking was carried out with dimethoxy methane. The CO2 sorption capacity of hypercross-linked lignite coal was approximately three fold higher than the virgin coal at 313 K and 1 atm. 29 wt% of NOx adsorption was observed at 298 K and 1 atm. Both the lignite and its hypercross-linked forms were characterized by Fourier transform infra red (FTIR), diffuse reflectance ultra violet?vis (DRS UV?vis) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Brunauer Emmet Teller (BET) adsorption isotherm and x-ray diffraction (XRD) studies.
- Parvareh F, Sharma M, Qadir A, Khalilpour DM, Chiesa M, Abbas A, Renew. Sust. Energ. Rev., 38, 1029 (2014)
- Cote AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM, Science, 310, 1166 (2005)
- Cote AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM, J. Am. Chem. Soc., 129(43), 12914 (2007)
- Kuhn P, Antonietti M, Thomas A, Angew. Chem.-Int. Edit., 47, 3450 (2008)
- Bojdys MJ, Jeromenok J, Thomas A, Antonietti M, Adv. Mater., 22(19), 2202 (2010)
- Tsyurupa MP, Davankov VA, React. Funct. Polym., 66(7), 768 (2006)
- Wu DC, Xu F, Sun B, Fu RW, He HK, Matyjaszewski K, Chem. Rev., 112(7), 3959 (2012)
- Budd PM, Ghanem BS, Makhseed S, McKeown NB, Msayib KJ, Tattershall CE, Chem. Commun., 2, 230 (2004)
- McKeown NB, Budd PM, Msayib KJ, Ghanem BS, Kingston HJ, Tattershall CE, Makhseed S, Reynolds KJ, Fritsch D, Chem. Eur. J., 11, 2610 (2005)
- Li ZH, Wu DC, Liang YR, Fu RW, Matyjaszewski K, J. Am. Chem. Soc., 136(13), 4805 (2014)
- Jonathan G, Jean MJF, Frantisek S, Small, 5, 1098 (2009)
- Okay O, Prog. Polym. Sci, 25, 711 (2000)
- Gokmen MT, DuPrez FE, Prog. Polym. Sci, 37, 365 (2012)
- Duranoglu D, Kaya IG, Beker U, Senkal BF, Chem. Eng. J., 181-182, 103 (2012)
- Huang JH, Yang L, Wu XF, Xu MW, Liu YN, Deng SG, Chem. Eng. J., 222, 1 (2013)
- Zhang SM, Chang Z, Hu TL, Bu XH, Inorg. Chem., 49(24), 11581 (2010)
- Nugent PS, Rhodus VL, Pham T, Forrest K, Wojtas L, Space B, Zaworotko MJ, J. Am. Chem. Soc., 135, 10950 (2013)
- Fang W, Luod Z, Jiang J, Phys. Chem. Chem. Phys., 15, 651 (2013)
- He H, Li W, Zhong M, Konkolewicz D, Wu D, Yaccato K, Rappold T, Sugar G, David NE, Matyjaszewski K, Energy Environ. Sci., 6, 488 (2013)
- He H, Zhong M, Konkolewicz D, Yacatto K, Rappold T, Sugar G, David NE, Gelb J, Kotwal N, Merkle A, Matyjaszewski K, Adv. Funct. Mater., 23, 4720 (2013)
- Goeppert A, Czaun M, Prakash GKS, Olah GA, Energy Environ. Sci., 5, 7833 (2012)
- The Annual Energy Review (AER) 2006. U.S. Energy Information Administration (EIA), primary report of annual historical energy statistics 2008, Archived from the original on 23 May 2011. http://www.eia.gov/totalenergy/data/annual/ar-chive/038406.pdf
- Garnier C, Finqueneisel G, Zimny T, Pokryszka Z, Lafortune S, Defossez PDC, Gaucher EC, Int. J. Coal Geol., 87(2), 80 (2011)
- Kelemen SR, Kwiatek LM, Int. J. Coal Geol., 77(1-2), 2 (2009)
- Pan Z, Connell LD, J. Int, Greenhouse Gas Control, 3, 77 (2009)
- Kim HJ, Shi Y, He J, Lee HH, Lee CH, Chem. Eng. J., 171(1), 45 (2011)
- Lee HH, Kim HJ, Shi Y, Keffer D, Lee CH, Chem. Eng. J., 230, 93 (2013)
- Wang ZT, Fu ZK, Zhang BA, Wang GX, Rudolph V, Huo LW, Min. Sci. Technol., 19, 8 (2009)
- Vinodh R, Hemalatha P, Ganesh M, Mei PM, Aziz A, Palanichamy M, Cha WS, Jang HT, RSC Adv., 4, 3668 (2014)