화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.27, 329-333, July, 2015
Effect of chemical treatments on lithium recovery process of activated carbons
E-mail:,
In this work, surface characteristics of chemically treated activated carbons (ACs) were studied for lithium ion in aqueous solution. From the results, it was found that the chemical treatments introduced functional groups onto the ACs surfaces. The amount of lithium ion recovery was enhanced by basic treatments. Also, we characterized lithium ion adsorption-desorption efficiency. The lithium adsorption-desorption efficiency exhibited good stability after five adsorption?desorption cycles. Consequently, it could be concluded that lithium ion recovery behaviors are greatly influenced by the basic characteristics of AC surfaces, resulting in enhanced electron acceptor-donor interaction at interfaces.
  1. Zhu GR, Wang P, Qi PF, Gao CJ, Chem. Eng. J., 235, 340 (2014)
  2. Hong HJ, Park IS, Ryu TG, Ryu JH, Kim BG, Chung KS, Chem. Eng. J., 234, 16 (2011)
  3. Castillo S, Ansart F, Laberty-Robert C, Portal J, J. Power Sources, 112, 247 (2012)
  4. Speirs J, Comtestabile M, Houari Y, Gross R, Renew. Sust. Energ. Rev., 35, 183 (2014)
  5. Lemaire J, Svecova L, Lagallarde F, Laucournet R, Thivel P, Hydrometallurgy, 143, 1 (2014)
  6. Ishimori K, Imura H, Ohashi K, Anal. Chim. Acta, 454, 241 (2002)
  7. Hoshino T, Desalination, 317, 11 (2013)
  8. Chagnes A, Pospiech B, J. Chem. Technol. Biotechnol., 88(7), 1191 (2013)
  9. Zhou ZY, Qin W, Liang SK, Tan YZ, Fei WY, Ind. Eng. Chem. Res., 51(39), 12926 (2012)
  10. Nishihama S, Onishi K, Yoshizuka K, Solvent Extr. Ion Exch., 29, 421 (2011)
  11. Epstein JA, Feist EM, Zmora J, Marcus Y, Hydrometallurgy, 6, 269 (1981)
  12. Yu QQ, Sasaki K, Hirajima T, J. Hazard. Mater., 262, 38 (2013)
  13. Kim BJ, Lee YS, Park SJ, Int. J. Hydrog. Energy, 33(15), 4112 (2008)
  14. Chitrakar R, Kanoh H, Miyai Y, Ooi K, Ind. Eng. Chem. Res., 40(9), 2054 (2001)
  15. Jung MJ, Kim JW, Im JS, Park SJ, Lee YS, J. Ind. Eng. Chem., 15(3), 410 (2009)
  16. Park SJ, Jang YS, Shim JW, Ryu SK, J. Colloid Interface Sci., 260(2), 259 (2003)
  17. Bhatt MD, O'Dwyer C, Curr. Appl. Phys., 14(3), 349 (2014)
  18. Han Y, Kim H, Park J, Chem. Eng. J., 210, 482 (2012)
  19. Shim JS, Park SJ, Ryu SK, Carbon, 39, 1635 (2001)
  20. Molina-Sabio M, Almansa C, Rodriquez-Reinoso F, Carbon, 41, 2113 (2003)
  21. Park SJ, Kim JS, J. Colloid Interface Sci., 232(2), 311 (2000)
  22. Park SJ, Jin SY, J. Colloid Interface Sci., 286(1), 417 (2005)
  23. Danish M, Hashim R, Ibrahim MNM, Sulaiman O, J. Anal. Appl. Pyrolysis, 104, 418 (2013)
  24. Park SJ, Park BJ, Ryu SK, Carbon, 37, 1223 (1999)
  25. Yoo HM, Lee SY, Kim BJ, Park SJ, Carbon Lett., 12, 112 (2011)
  26. Rather SU, Zacharia R, Naik MUD, Hwang SW, Kim AR, Nahm KS, Int. J. Hydrog. Energy, 33(22), 6710 (2008)
  27. Park SJ, Jang YS, J. Colloid Interface Sci., 249(2), 458 (2002)
  28. Won DS, Park IS, Park M, Sohn Y, Kim BG, Nahm KS, Chung KS, Kim P, Curr. Appl. Phys., 14(9), 1245 (2014)
  29. Xu RL, Wu CF, Xu HY, Carbon, 45, 2806 (2007)
  30. Mukherjee J, Ramkumar J, Chandramoluleeswaran S, Shukla R, Tyagi AK, J. Radioanal. Nucl. Chem., 297, 49 (2013)
  31. Boehm HP, Carbon, 1, 394 (1964)
  32. Chiang HL, Huang CP, Chiang PC, Chemosphere, 47, 257 (2002)
  33. Zhang QH, Sun S, Li S, Jiang H, Yu JG, Chem. Eng. Sci., 62, 18 (2007)
  34. Mahajan P, Youssef A, Walker PL, Sep. Sci. Technol., 13, 487 (1978)
  35. Lee SY, Park SJ, RSC Adv., 4, 21899 (2014)