Polymer(Korea), Vol.39, No.4, 627-634, July, 2015
다중벽 탄소나노튜브가 포함된 전기 전도성 아크릴계 점착제의 유화 중합 및 그 물성
Emulsion Polymerization of Electrically Conductive Acrylic Pressure Sensitive Adhesives (EPSAs) Containing Modified MWCNTs and Their Properties
E-mail:
초록
본 연구에서는 개질된 다중벽 탄소나노튜브(MWCNTs)를 충전제로 사용하여 전기 전도성 아크릴계 점착제 제조에 관한 연구를 수행하였다. 황산:질산(3:1 v/v)의 혼산을 사용하여 MWCNTs 표면에 카르복시기를 도입 후, SOCl2와 1,4-butanediol(BD)를 반응시켜 MWCNT-OH를 제조하였다. 제조된 MWCNT-OH에 3-methacryloxypropyltrimethoxylsilane (MPTMS)를 반응시켜 methacrylate기를 도입하였다. 표면 개질된 MWCNT, 2-ethylhexyl acrylate(2-EHA), n-butyl acrylate(n-BA), methyl methacrylate(MMA)와 acrylic acid(AAc)를 단량체로 하여 유화중합법으로 아크릴 점착제를 제조하였다. MWCNT-MPTMS의 함량이 0~0.5 wt%로 증가할수록, 점도, 박리강도 및 점착력은 증가하고, 면 저항값은 낮아지는 것을 확인하였다.
In this study, multi-walled carbon nanotubes (MWCNTs) were oxidized with a mixture of H2SO4:HNO3(3:1 v/v). After oxidation, oxidized MWCNTs were treated with thionyl chloride (SOCl2) and 1,4-butanediol (BD) in sequence at room temperature to introduce hydroxyl groups on the surface of MWCNTs. The prepared MWCNT-OH was silanized with 3-methacryloxypropyltrimethoxylsilane (MPTMS), to introduce polymerizable methacrylate groups to make MWCNT-MPTMS. MWCNT-MPTMS was used for the emulsion polymerization of 2-ethylhexyl acrylate (2-EHA), nbutyl acrylate (n-BA), methyl methacrylate (MMA), and acrylic acid (AAc) as monomers to prepare electrically conductive acrylic pressure-sensitive adhesive (EPSA). We found increase of Tg, viscosity, peel strength and tack and decrease of sheet resistivity with increase of MWCNT-MPTMS contents in EPSA from 0 to 0.5 wt%.
Keywords:MWCNT;silane coupling agent;emulsion polymerization;electrically conductive pressure sensitive adhesive
- Hong SH, Kim MH, Hong CK, Jung DS, Shim SE, Synth. Met., 158, 900 (2008)
- Yun CH, Lee HS, Polym. Sci. Technol., 18(1), 4 (2007)
- Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS, Macromol. Rapid Commun., 24(18), 1070 (2003)
- Xie X, Gao L, Carbon, 45, 2365 (2007)
- Mathur RB, Pande S, Singh BP, Dhami TL, Polym. Compos., 29, 717 (2008)
- Oliva-Aviles AI, Aviles F, Sosa V, Carbon, 49, 2989 (2011)
- Kim HJ, Lee HJ, Park JW, J. Adhes. Inferface, 12, 43 (2011)
- Ma PG, Kim JK, Tang BZ, Carbon, 44, 3232 (2006)
- Joo YT, Jung KH, Kim Y, Polym.(Korea), 35(5), 395 (2011)
- Jeong DS, Nam BU, Polym.(Korea), 35(1), 17 (2011)
- Song JH, Park SJ, Park SK, Lee MC, Lim JC, J. Korean Ind. Eng. Chem., 10(4), 523 (1999)
- Lee HJ, Jang SH, Chang SM, Kim JM, Korean Chem. Eng. Res., 48(5), 609 (2010)
- Lee HJ, Park JS, Lee SR, Kim JM, Chang SM, Korean Chem. Eng. Res., 47(4), 470 (2009)
- Park MC, Lee MC, Polym.(Korea), 27(6), 596 (2003)
- Lim TK, Lee MC, Korean Chem. Eng. Res., 52(3), 289 (2014)
- Lee HJ, Park JS, Lee SR, Kim JM, Chang SM, Korean Chem. Eng. Res., 47(4), 470 (2009)
- Chung HS, Park GH, Kim TY, Ahn HJ, Kim DH, Mol. Cryst. Liq. Cryst., 583, 43 (2013)
- Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C, Carbon, 49, 833 (2008)
- Prado LASA, Kopyniecka A, Chandrasekaran S, Broza G, Roslaniec Z, Schulte K, Macromol. Mater. Eng., 298, 359 (2013)
- Aviles F, Cauich-Rodriguez JV, Rodriguez-Gonzalez JA, May-Pat A, eXPRESS Polym. Lett., 5, 766 (2011)
- Lee SH, Lee SK, Hwang TS, Appl. Chem. Eng., 24(2), 148 (2013)
- Lee SM, Ha KR, Polym.(Korea), 38, 257 (2013)
- Choi HS, Hwang HY, Jeong SK, Lee SK, Lee KY, Polym.(Korea), 36, 29 (2011)
- Mir IA, Kumar D, Nanoscience Methods, 1, 183 (2012)
- Czech Z, Pelech R, Kowalczyk A, Kowalski A, Wrobel RJ, Pol. J. Chem., 4, 77 (2011)