화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.4, 627-634, July, 2015
다중벽 탄소나노튜브가 포함된 전기 전도성 아크릴계 점착제의 유화 중합 및 그 물성
Emulsion Polymerization of Electrically Conductive Acrylic Pressure Sensitive Adhesives (EPSAs) Containing Modified MWCNTs and Their Properties
E-mail:
초록
본 연구에서는 개질된 다중벽 탄소나노튜브(MWCNTs)를 충전제로 사용하여 전기 전도성 아크릴계 점착제 제조에 관한 연구를 수행하였다. 황산:질산(3:1 v/v)의 혼산을 사용하여 MWCNTs 표면에 카르복시기를 도입 후, SOCl2와 1,4-butanediol(BD)를 반응시켜 MWCNT-OH를 제조하였다. 제조된 MWCNT-OH에 3-methacryloxypropyltrimethoxylsilane (MPTMS)를 반응시켜 methacrylate기를 도입하였다. 표면 개질된 MWCNT, 2-ethylhexyl acrylate(2-EHA), n-butyl acrylate(n-BA), methyl methacrylate(MMA)와 acrylic acid(AAc)를 단량체로 하여 유화중합법으로 아크릴 점착제를 제조하였다. MWCNT-MPTMS의 함량이 0~0.5 wt%로 증가할수록, 점도, 박리강도 및 점착력은 증가하고, 면 저항값은 낮아지는 것을 확인하였다.
In this study, multi-walled carbon nanotubes (MWCNTs) were oxidized with a mixture of H2SO4:HNO3(3:1 v/v). After oxidation, oxidized MWCNTs were treated with thionyl chloride (SOCl2) and 1,4-butanediol (BD) in sequence at room temperature to introduce hydroxyl groups on the surface of MWCNTs. The prepared MWCNT-OH was silanized with 3-methacryloxypropyltrimethoxylsilane (MPTMS), to introduce polymerizable methacrylate groups to make MWCNT-MPTMS. MWCNT-MPTMS was used for the emulsion polymerization of 2-ethylhexyl acrylate (2-EHA), nbutyl acrylate (n-BA), methyl methacrylate (MMA), and acrylic acid (AAc) as monomers to prepare electrically conductive acrylic pressure-sensitive adhesive (EPSA). We found increase of Tg, viscosity, peel strength and tack and decrease of sheet resistivity with increase of MWCNT-MPTMS contents in EPSA from 0 to 0.5 wt%.
  1. Hong SH, Kim MH, Hong CK, Jung DS, Shim SE, Synth. Met., 158, 900 (2008)
  2. Yun CH, Lee HS, Polym. Sci. Technol., 18(1), 4 (2007)
  3. Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS, Macromol. Rapid Commun., 24(18), 1070 (2003)
  4. Xie X, Gao L, Carbon, 45, 2365 (2007)
  5. Mathur RB, Pande S, Singh BP, Dhami TL, Polym. Compos., 29, 717 (2008)
  6. Oliva-Aviles AI, Aviles F, Sosa V, Carbon, 49, 2989 (2011)
  7. Kim HJ, Lee HJ, Park JW, J. Adhes. Inferface, 12, 43 (2011)
  8. Ma PG, Kim JK, Tang BZ, Carbon, 44, 3232 (2006)
  9. Joo YT, Jung KH, Kim Y, Polym.(Korea), 35(5), 395 (2011)
  10. Jeong DS, Nam BU, Polym.(Korea), 35(1), 17 (2011)
  11. Song JH, Park SJ, Park SK, Lee MC, Lim JC, J. Korean Ind. Eng. Chem., 10(4), 523 (1999)
  12. Lee HJ, Jang SH, Chang SM, Kim JM, Korean Chem. Eng. Res., 48(5), 609 (2010)
  13. Lee HJ, Park JS, Lee SR, Kim JM, Chang SM, Korean Chem. Eng. Res., 47(4), 470 (2009)
  14. Park MC, Lee MC, Polym.(Korea), 27(6), 596 (2003)
  15. Lim TK, Lee MC, Korean Chem. Eng. Res., 52(3), 289 (2014)
  16. Lee HJ, Park JS, Lee SR, Kim JM, Chang SM, Korean Chem. Eng. Res., 47(4), 470 (2009)
  17. Chung HS, Park GH, Kim TY, Ahn HJ, Kim DH, Mol. Cryst. Liq. Cryst., 583, 43 (2013)
  18. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C, Carbon, 49, 833 (2008)
  19. Prado LASA, Kopyniecka A, Chandrasekaran S, Broza G, Roslaniec Z, Schulte K, Macromol. Mater. Eng., 298, 359 (2013)
  20. Aviles F, Cauich-Rodriguez JV, Rodriguez-Gonzalez JA, May-Pat A, eXPRESS Polym. Lett., 5, 766 (2011)
  21. Lee SH, Lee SK, Hwang TS, Appl. Chem. Eng., 24(2), 148 (2013)
  22. Lee SM, Ha KR, Polym.(Korea), 38, 257 (2013)
  23. Choi HS, Hwang HY, Jeong SK, Lee SK, Lee KY, Polym.(Korea), 36, 29 (2011)
  24. Mir IA, Kumar D, Nanoscience Methods, 1, 183 (2012)
  25. Czech Z, Pelech R, Kowalczyk A, Kowalski A, Wrobel RJ, Pol. J. Chem., 4, 77 (2011)