Polymer(Korea), Vol.39, No.4, 662-667, July, 2015
전도성 입자의 형태가 감광성 실버 페이스트의 미세 전극 패턴 형성에 미치는 영향
Effect of Conductive Filler Shape on Fine Electrode Pattern of Photosensitive Silver Pastes
E-mail:
초록
전도성이 우수한 미세 전극 패턴을 형성하기 위해 은 분말을 함유한 감광성 페이스트를 구현하고 입자의 형태에 따른 전기적 특성을 평가하였다. 노볼락 에폭시 변성 아크릴레이트 올리고머, 아크릴레이트 단량체, 광개시제를 혼합하여 광경화 및 알칼리 현상이 가능한 수지조성을 기반으로 은 분말을 첨가하여 감광성 Ag 페이스트를 제조하였다. 구형 은 분말의 함량이 증가할수록 전도성 입자간 밀집도가 좋아져 비저항(volume resistance) 값은 낮아졌으며, 88 wt%의 구형 은 분말을 함유한 페이스트는 1.14×10-4 Ω·cm의 값을 나타내었다. 구형과 판상형 은 분말을 8:2의 비로 혼합하였을 때 84 wt%로 은 분말의 함량을 줄였음에도 불구하고 비저항은 7.04×10-5Ω·cm로 가장 우수한 값을 보였다. 이 결과는 판상형 은 분말이 구형 분말 사이의 전도성 연결을 개선하여 전기가 흐르기 용이하도록 만들어 주었기 때문이다.
Photosensitive silver pastes were developed using a mixture of spherical and flake-type silver particles for fine electrode patterns with high electrical conductivity, and the electrical characteristics were evaluated as a function of particle shape. The photosensitive silver pastes mixed up novolac epoxy-modified acrylate oligomer, acrylate monomer, and photoinitiator as a photocurable and alkali-developable binder resin composition, and silver spheres and flakes as conductive fillers. With a increase of silver loading amount the volume resistance decreased due to enhancement of packing density between the conductive fillers, where the conductive paste with 88 wt% silver sphere content showed 1.14×10-4 Ω·cm. When the silver particles loading and sphere to flake ratio were 84 wt% and 8:2, the volume resistance exhibited 7.04×10-5 Ω·cm. This result was attributed to improvement of electrical contacts between silver spheres by flakes.
Keywords:photosensitive silver pastes;electrical conductivity;fine electrode pattern;particle shape effect
- Gordon RG, MRS Bull., 25, 52 (2000)
- Wang J, Liang MH, Fang Y, Qiu TF, Zhang J, Zhi LJ, Adv. Mater., 24(21), 2874 (2012)
- Lee J, Lee P, Lee H, Lee D, Lee SS, Ko SH, Nanoscale, 4, 6408 (2012)
- Elschner A, Lovenich W, MRS Bull., 36, 794 (2011)
- Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH, Nature, 457, 706 (2009)
- de Groep JV, Spinelli P, Polman A, Nano Lett., 12, 3138 (2012)
- Hu L, Kim HS, Lee JY, Peumans P, Cui Y, ACS Nano, 4, 2955 (2010)
- Lee JY, Connor ST, Cui Y, Peumans P, Nano Lett., 8, 689 (2008)
- Lee JH, Lee P, Lee D, Lee SS, Ko SH, Cryst. Growth Des., 12, 5598 (2012)
- Ko SH, Pan H, Grigoropoulos CP, Luscombe CK, Frechet JMJ, Poulikakos D, Nanotechnology, 18, 345202 (2007)
- Heo EY, Display Focus, 22, 22 (2012)
- Shaheen SE, Radspinner R, Peyghambarian N, Jabbour GE, Appl. Phys. Lett., 79, 2996 (2001)
- Pardo DA, Jabbour GE, Peyghambarian N, Adv. Mater., 12(17), 1249 (2000)
- Kim SJ, Lee JM, Lee WJ, Kim S, Park CP, Park B, In I, Chem. Lett., 43(12), 1855 (2014)
- Shin DY, Han JW, Chun S, Nanoscale, 6, 630 (2014)
- Tredinnick M, Barnwell P, Malanga D, Proc. 34th International Symposium on Microelectronics, 676 (2001).
- Skurski M, Smith M, Draudt R, Amey D, Horowitz S, Champ M, Int. J. Microcirc. Electron. Pack., 21, 355 (1998)
- Park SD, Lee YS, Cho HM, Lee WS, Park JC, J. Microelectron. Packag. Soc., 8, 69 (2001)
- Park SD, Kang NM, Lim JK, Kim DK, Kang NK, Park JC, J. Korea Ceram. Soc., 41, 313 (2004)
- Kim DK, Lim JK, Kim WG, Haw JR, Polym.(Korea), 28(6), 531 (2004)
- Kim DK, Lim JK, Kim WG, Heo JL, Polym.(Korea), 29(3), 237 (2005)
- Baek SS, Lee SW, Hwang SH, Polym.(Korea), 37(1), 121 (2013)
- Lim HS, Kim SN, Lim JA, Park SD, J. Mater. Chem., 22, 20529 (2012)