화학공학소재연구정보센터
Clean Technology, Vol.21, No.2, 102-107, June, 2015
치환 다이페놀의 효율적 고리화 반응: 설퍼로다민B의 합성에의 응용
Efficient Cyclization of Substituted Diphenols : Application to the Synthesis of Sulforhodamine B
E-mail:
초록
Rhodamine염료는 높은 흡광계수와 함께 넓은 가시광선 영역에서 고효율과 안정성을 나타내는 형광을 제공함으로써 형광표지 물질로 널리 사용되고 있다. Rhodamine 화합물을 형광표지 물질로 이용하기 위해서는 rhodamine골격을 (생체)분자나 표면에 공유결합 시키는 화학적 과정이 필수적이기 때문에 이에 관련하여 다양한 rhodamine유도체를 합성해내는 효율적이고 실제적인 방법의 개발은 큰 관심을 끌어왔다. Sulforhodamine B는 반응성이 큰 두 개의 sulfoxy작용기를 포함하고 있는데 이를 이용하여 여러 재료에 공유결합 시킴으로써 널리 활용될 수 있는 유용한 화합물이다. 본 연구에서는 4-formyl-1, 3-benzenedisulfonic acid의 disodium염과 3-diethylaminophenol으로부터 3단계에 걸쳐 sulforhodamine B를 합성하는 과정을 연구하였다. 이 과정에서 dihydroxytriarylmethane 중간체를 xanthene 골격으로 전환하는 두 번째 단계를 획기적으로 개선하는 방법에 대해 기술하였다. 이는 반응 중에 생성되는 물분자가 역반응에 참여하는 것을 억제하도록 메탄올을 가함으로써 이루어졌다. 그 결과, 반응온도는 낮아지고(135에서 80 ℃), 수율은 크게 증가되었다(20% 미만에서 84%). 이로써, 기존의 3단계에 걸친 sulforhodamine B의 제법은 에너지 절감 및 자원효율 면에서 개선된 방법으로 이루어지게 되었다.
Rhodamine dyes are widely used as fluorescent probes because of their excellent photophysical properties, such as high extinction coefficients, excellent quantum yields, great photostability, relatively long emission wavelengths. A great synthetic effort has been focused on developing efficient and practical procedures to prepare rhodamine derivatives, because for most applications the probe must be covalently linked to another (bio)molecule or surface. Sulforhodamine B is one of the most used rhodamine dyes for this purpose, because it carries two sulfoxy functions which can be easily utilized for binding with other molecules. Recently, we needed an expedient, practical synthesis of sulforhodamine derivatives. We found the existing procedure for obtaining those compounds unsatisfactory, particularly, with the cyclization process of the dihydroxytriarylmethane (1) to produce the corresponding xanthene derivative (2). We report here our findings, which represent modification of the existing literature procedure and provide access to the corresponding xanthene derivative (2) in a high yield. Use of methanol as a co-solvent was found quite effective to prohibit the water molecule produced during the cyclization reaction from retro-cyclizing back to the starting dihydroxytriarylmethane and the yield of the cyclization was increased (up to 84% from less than 20%). The reaction temperature was significantly lowered (80 vs. 135 ℃). Thus, the reaction proceeds in a higher yield and energy-saving manner where the use of reactants and the production of chemical wastes is minimized.
  1. Adronov A, Frechet JMJ, Chem. Commun., 1701 (2000)
  2. Hecht S, Frechet JMJ, J. Am. Chem. Soc., 123(28), 6959 (2001)
  3. Serin JM, Brousmiche DW, Frechet JMJ, J. Am. Chem. Soc., 124(40), 11848 (2002)
  4. Farinha JPS, Charreyre MT, Martinho JMG, Winnik MA, Pichot C, Langmuir, 17(9), 2617 (2001)
  5. Fonseca T, Relogio P, Martinho JMG, Farinha JPS, Langmuir, 23(10), 5727 (2007)
  6. Czarnik AW, Fluorescent Chemosensors for Ion and Molecular Recognition, American Chemical Society, Washington, DC, 1993.
  7. Zhang SW, Swager TM, J. Am. Chem. Soc., 125(12), 3420 (2003)
  8. Mason WT, Ed., Fluorescent and Luminescent Probes for Biological Activity, Academic Press, San Diego, 1999.
  9. Griffin BA, Adams SR, Tsien RY, Science, 281, 269 (1998)
  10. Adams SR, Campbell RE, Gross LA, Martin BR, Walkup GK, Yao Y, Llopis J, Tsien RY, J. Am. Chem. Soc., 124(21), 6063 (2002)
  11. Lemieux GA, de Graffenried CL, Bertozzi CR, J. Am. Chem. Soc., 125(16), 4708 (2003)
  12. Minta A, Kao JPY, Tsien RY, J. Biol. Chem., 264, 8171 (1989)
  13. Minta A, Tsien RY, J. Biol. Chem., 264, 19449 (1989)
  14. Ha T, Zhuang X, Babcock H, Kim H, Orr JW, Williamson JR, Bartley L, Russell R, Herschlag D, Chu S, Springer Series in Chemical Physics, Springer Publishing, New York, 67, 326 (2001)
  15. Sameiro M, Goncalves T, Chem. Rev., 109(1), 190 (2009)
  16. Beija M, Afonso CAM, Martinho JMG, Chem. Soc. Rev., 38, 2410 (2009)
  17. Chen XQ, Pradhan T, Wang F, Kim JS, Yoon J, Chem. Rev., 112(3), 1910 (2012)
  18. Nguyen T, Francis MB, Org. Lett., 5, 3245 (2003)
  19. Lucius M, Bruning M, “Verfahren zur Darstellung Roter Sauerfarbstoffe der Triphenylmethanreihe,” DE 205758 (1909).
  20. Shi J, Zhang X, Neckers DC, J. Org. Chem., 57, 4418 (1992)
  21. Azuma E, Kuramochi K, Tsubaki K, Tetrahedron, 69, 1694 (2013)