Korean Journal of Chemical Engineering, Vol.32, No.8, 1498-1514, August, 2015
Lattice Boltzmann analysis of effect of heating location and Rayleigh number on natural convection in partially heated open ended cavity
E-mail:
Natural convection characteristics of a partially heated open ended square cavity have been investigated numerically by using an in-house computational flow solver based on the passive scalar thermal lattice Boltzmann method (PS-TLBM) with D2Q9 (two-dimensional and nine-velocity link) lattice model. The partial part of left wall of the cavity is heated isothermally at either of the three different (bottom, middle and top) locations for the fixed heating length as half of characteristic length (H/2) while the right wall is open to the ambient conditions. The other parts of the cavity are thermally isolated. In particular, the influences of partial heating locations and Rayleigh number (103≤Ra≤106) in the laminar zone on the local and global natural convection characteristics (such as streamline, vorticity and isotherm contours; centerline variations of velocity and temperature; and local and average Nusselt numbers) have been presented and discussed for the fixed value of the Prandtl number (Pr=0.71). The streamline patterns show qualitatively similar nature for all the three heating cases and Rayleigh numbers, except the change in the recirculation zone which is found to be largest for middle heating case. Isotherm patterns are shifted towards a partially heated wall on increasing Rayleigh number and/or shifting of heating location from bottom to top. Both the local and average Nusselt numbers, as anticipated, shown proportional increase with Rayleigh number. The cavity with middle heating location shown higher heat transfer rate than that for the top and bottom heating cases. Finally, the functional dependence of the average Nusselt number on flow governing parameters is also presented as a closure relationship for the best possible utilization in engineering practices and design.
Keywords:Natural Convection;Passive Scalar Thermal Lattice Boltzmann Method (PS-TLBM);Partially Heated Open Ended Cavity;Nusselt Number;Rayleigh Number
- Jmai R, Ben-beya B, Lili T, Superlattices Microstruct., 53, 130 (2013)
- Gangawane KM, Bharti RP, Kumar S, Thermal lattice Boltzmann methods: a review, in: Conference on Technological Advancements in Chemical and Environmental Engineering (TACEE-2012), Paper no. O270, BITS Pilani, Pilani, India, March 23-24 (2012).
- Gangawane KM, Bharti RP, Kumar S, Thermal analysis of natural convection in dierentially heated shallow cavities at dierent Rayleigh numbers by lattice Boltzmann approximation, in: Proceedings of 65th Annual Session of IIChE (CHEMCON-2012), International Conference on Sustainable Technologies for Energy and Environment in Process Industries and Indo-US Joint International Conference on Energy and Environment, Paper no. P-311, NIT Jalandhar, Jalandhar, India, December 27-30 (2012).
- Gangawane KM, Bharti RP, Kumar S, Lattice Boltzmann simulation of natural convection in a partially dierentially heated square enclosure, in: Proceedings of the 22nd National and 11th ISHMT-ASME Heat and Mass Transfer Conference, Paper no. HMTC1300114, IIT Kharagpur, Kharagpur, India, December 28-31 (2013).
- Gangawane KM, Bharti RP, Kumar S, Can. J. Chem. Eng., 93(4), 766 (2015)
- Spall RE, Int. J. Heat Mass Transf., 23, 115 (1996)
- Bilgen E, Muftuoglu A, Int. Commun. Heat Mass Transf., 35, 545 (2008)
- Hsu TH, Wang SG, Numer. Heat Transf. A-Appl., 38, 627 (2000)
- Du SQ, Bilgen E, Vasseur P, Int. J. Heat Mass Transf., 34, 263 (1998)
- Hsiao KL, Appl. Therm. Eng., 27, 1895 (2007)
- Habib S, Surry C, Belghith A, High Temperature Material Process, 9, 483 (2005)
- Hobbi A, Siddiqui K, Int. J. Heat Mass Transf., 52(19-20), 4650 (2009)
- Cengel YA, Afshin JG, Heat and Mass Transfer, McGraw Hill Higher Education, 2nd Ed. (2011).
- Valencia A, Frederick RL, Int. J. Heat Mass Transf., 32(8), 1567 (1989)
- Begum R, Basit MA, Eur. J. Sci. Res., 22, 216 (2008)
- Xi H, Peng G, Chou SH, Phys. Rev. E, 59, 6202 (1999)
- Dong Y, Zhang J, Yan G, Appl. Math. Model., 34, 481 (2010)
- Alexander FJ, Chen S, Sterling JD, Phys. Rev. E, 47, R2249 (1993)
- He X, Chen S, Doolen GD, J. Comput. Phys., 146, 282 (1998)
- Peng Y, Shu C, Chew Y, Phys. Rev. E, 68(2), 026701 (2003)
- Kuznik F, Vareilles J, Rusaouen G, Krauss G, Int. J. Heat Fluid Flow, 28, 862 (2007)
- Guo Z, Zheng C, Shi B, Zhao TS, Phys. Rev. E, 75, 1 (2007)
- Chen S, Tian Z, Int. J. Heat Fluid Flow, 31, 227 (2010)
- Shin CB, Economou DJ, Int. Commun. Heat Mass Transf., 33(10), 2191 (1990)
- Vafai K, Ettefagh J, Int. Commun. Heat Mass Transf., 33(10), 2329 (1990)
- Balaji C, Venkateshan SP, Int. J. Heat Fluid Flow, 15(4), 317 (1994)
- Mohamad AA, Numer. Heat Transf. A-Appl., 27, 705 (1995)
- Angirasa D, Eggels JGM, Nieuwstadt FTM, Numer. Heat Transf. A-Appl., 28, 755 (1995)
- Khanafer K, Vafai K, Int. J. Heat Mass Transf., 43(22), 4087 (2000)
- Khanafer K, Vafai K, Int. J. Heat Mass Transf., 45(12), 2527 (2002)
- Polat O, Bilgen E, Int. J. Therm. Sci., 41, 360 (2002)
- Hinojosa JF, Cabanillas RE, Alvarez G, Estrada CE, Int. Commun. Heat Mass Transf., 32(9), 1184 (2005)
- Bilgen E, Oztop H, Int. J. Heat Mass Transf., 48(8), 1470 (2005)
- Mohamad AA, El-Ganaoui M, Bennacer R, Int. J. Therm, 48(10), 1870 (2009)
- Sajjadi H, Gorji M, Kefayati GR, Ganji DD, Shayannia M, World Academy of Science, Engineering and Technology, 55, 265 (2010)
- Prakash M, Kedare SB, Nayak JK, Int. J. Therm. Sci., 51, 23 (2012)
- Chung S, Vafai K, Int. J. Heat Mass Transf., 53(13-14), 2703 (2010)
- Haghshenas A, Nasr MR, Rahimian MH, Int. J. Heat Mass Transf., 53, 1513 (2010)
- Kefayati GR, Int. Commun. Heat Mass Transf., 40, 67 (2013)
- Sankar M, Bhuvaneswari M, Sivasankaran S, Do Y, Int. J. Heat Mass Transf., 54(25-26), 5173 (2011)
- Rahman MM, Oztop HF, Saidur R, Mekhilef S, Al-Salem K, Comput. Fluids, 79, 53 (2013)
- Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, John Wiley & Sons, Inc., 2nd Ed. (2006).
- Chhabra RP, Richardson JF, Non-Newtonian Flow and Applied Rheology, Butterworth-Heinemann, Oxford, UK, 2nd Ed. (2008).
- Deen WM, Analysis of Transport Phenomena, Oxford University Press, 2nd Ed. (2013).
- Srinivas AR, Bharti RP, Chhabra RP, Ind. Eng. Chem. Res., 48(21), 9735 (2009)
- Bejan A, Convective Heat Transfer, John Wiley & Sons, Inc., 3rd Ed. (2004).
- Fattahi E, Farhadi M, Sedighi K, Int. J. Therm. Sci., 49, 2353 (2010)
- Fattahi E, Farhadi M, Sedighi K, Nemati H, Int. J. Therm. Sci., 52, 137 (2012)
- Bharti RP, Chhabra RP, Eswaran V, Heat Mass Transf., 43(7), 639 (2007)
- Bharti RP, Chhabra RP, Eswaran V, Int. J. Heat Mass Transf., 50(5-6), 977 (2007)
- Bharti RP, Chhabra RP, Eswaran V, Chem. Eng. Sci., 62(7), 4729 (2007)
- Bharti RP, Sivakumar P, Chhabra P, Int. J. Heat Mass Transf., 51(7-8), 1838 (2008)
- Chan YL, Tien CL, Numer. Heat Transf. A-Appl., 8, 65 (1985)
- Chen S, Doolen GD, Ann. Rev. Fluid Mechanics, 30, 329 (1998)
- Peng Y, Shu C, Chew Y, J. Comput. Phys., 193(1), 260 (2004)
- Zou Q, He X, Phys. Fluids, 9, 1591 (1997)
- He Y, Qi C, Hu Y, Qin B, Li F, Ding Y, Nanoscale Res. Lett., 6, 1 (2011)
- Dellar PJ, Nanoscale Res. Lett., 190, 351 (2013)
- Bharti RP, Chhabra RP, Eswaran V, Can. J. Chem. Eng., 84(4), 406 (2006)
- Sivakumar P, Bharti RP, Chhabra RP, Chem. Eng. Sci., 61(18), 6035 (2006)
- Sivakumar P, Bharti RP, Chhabra RP, Chem. Eng. Sci., 62(6), 1682 (2007)
- Bharti RP, Chhabra RP, Ind. Eng. Chem. Res., 46(11), 3820 (2007)
- Patil RC, Bharti RP, Chhabra RP, Ind. Eng. Chem. Res., 47(5), 1660 (2008)
- Patil RC, Bharti RP, Chhabra RP, Ind. Eng. Chem. Res., 47(23), 9141 (2008)
- Tian FB, Bharti RP, Xu YQ, Comput. Mech., 53(2), 257 (2014)
- Gangawane KM, Bharti RP, Kumar S, J. Taiwan Inst. Chem. Eng., 10.1016/j.jtice.2014.11.020 (2015)
- Stephan K, Abdelsalam M, Int. J. Heat Mass Transf., 23, 73 (1980)