화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.8, 1554-1563, August, 2015
Composite membranes based on sulfonated poly(ether ether ketone) and SiO2 for a vanadium redox flow battery
E-mail:
Organic-inorganic composite membranes were prepared with sulfonated poly(ether ether ketone) (SPEEK) and different amounts of silica to improve chemical stability and vanadium hindrance for a vanadium redox flow battery. The durability of the prepared composite membrane was verified using a self-made dummy cell system and fully charged vanadium cathode half-cell electrolyte, which contained oxidative vanadium ions (VO2 +). The prepared composite membranes, with covalent crosslinking between the organic polymer and inorganic particles, resulted in reduced vanadium permeability and enhanced chemical stability. Ion exchange capacity, water uptake, proton conductivity, and vanadium permeability decreased with increasing silica content. Selectivity was defined to consider both permeability and proton conductivity and resulted in a membrane that exhibited both high proton conductivity and low ion permeability simultaneously. The prepared 1 wt% silica composite membrane showed 133-fold higher selectivity compared with that of a Nafion112 membrane. After the stability test, the composite membrane showed little change compared to the membrane before the stability test, which confirmed the commercial prospect of SPEEK/SiO2 composite membrane for a vanadium redox flow battery.
  1. Mohammadi T, Skyllaskazacos M, J. Membr. Sci., 107(1-2), 35 (1995)
  2. Hwang GJ, Ohya H, J. Membr. Sci., 132(1), 55 (1997)
  3. Mohammadi T, Kazacos MS, J. Appl. Electrochem., 27(2), 153 (1997)
  4. Jia CK, Liu JG, Yan CW, J. Power Sources, 195(13), 4380 (2010)
  5. Lue SJ, Shih TS, Wei TC, Korean J. Chem. Eng., 23(3), 441 (2006)
  6. Jeong S, Kim LH, Kwon Y, Kim S, Korean J. Chem. Eng., 31(11), 2081 (2014)
  7. Hwang GJ, Ohya H, J. Membr. Sci., 120(1), 55 (1996)
  8. Luo XL, Lu ZZ, Xi JY, Wu ZH, Zhu WT, Chen LQ, Qiu XP, J. Phys. Chem. B, 109(43), 20310 (2005)
  9. Mohammadi T, Skyllas-Kazacos M, J. Power Sources, 63, 179 (1996)
  10. Xi JY, Wu ZH, Qiu XP, Chen LQ, J. Power Sources, 166(2), 531 (2007)
  11. Teng XG, Zhao YT, Xi JY, Wu ZH, Qiu XP, Chen LQ, J. Power Sources, 189(2), 1240 (2009)
  12. Sang SB, Wu QM, Huang KL, J. Membr. Sci., 305(1-2), 118 (2007)
  13. Zeng Z, Jiang CP, Electrochem. Commun., 10, 372 (2008)
  14. Luo QT, Zhang HM, Chen J, Qian P, Zhai YF, J. Membr. Sci., 311(1-2), 98 (2008)
  15. Fabbri P, Messori M, Montecchi M, Pilati F, Taurino R, Tonelli C, Toselli M, J. Appl. Polym. Sci., 102(2), 1483 (2006)
  16. Qi CZ, Gao H, Yan FY, Liu WM, Bao GQ, Sun XD, Chen JM, Zheng XM, J. Appl. Polym. Sci., 97(1), 38 (2005)
  17. Wang N, Peng S, Electrochem. Commun., 17, 30 (2012)
  18. Silva VS, Ruffmann B, Silva H, Gallego YA, Mendes A, Madeira LM, Nunes SP, J. Power Sources, 140(1), 34 (2005)
  19. Luo QT, Zhang HM, Chen J, You DJ, Sun CX, Zhang Y, J. Membr. Sci., 325(2), 553 (2008)
  20. Sukkar T, Skyllas-Kazacos M, J. Appl. Electrochem., 34(2), 137 (2004)
  21. Li XF, Zhang G, Xu D, Zhao CJ, Na H, J. Power Sources, 165(2), 701 (2007)
  22. Chen DY, Wang SJ, Xiao M, Han DM, Meng YZ, J. Power Sources, 195(22), 7701 (2010)
  23. Luo YT, Guo JC, Wang CS, Chu D, J. Power Sources, 195(12), 3765 (2010)
  24. Kreuer KD, J. Membr. Sci., 185(1), 29 (2001)