화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.8, 1701-1706, August, 2015
Polyurethane curing kinetics for polymer bonded explosives: HTPB/IPDI binder
E-mail:
The kinetics of polyurethane reaction and the effect of catalysts on the curing behavior were studied. The mixtures of hydroxyl terminated polybutadiene and isophorone diisocyanate with different reaction catalysts were dynamically cured in a differential scanning calorimeter. The activation energies were evaluated by the Kissinger and the Ozawa methods. The Chang plot was also used to determine reaction order and rate constant. The results showed that the activation energies were influenced remarkably by the choice of catalysts. The degree of cure and the cure time at given temperatures were calculated by direct integration of modified auto-catalytic kinetic model. It would give valuable information like pot-life estimation during manufacturing polymer-bonded explosives.
  1. Talawar MB, Agarwal AP, Anniyappan A, Gore GM, Asthana SN, Venugopalan S, J. Hazard. Mater., 137(3), 1848 (2006)
  2. Samudre SS, Nair UR, Gore GM, Sinha RK, Sikder AK, Asthana SN, PROPELLANT-EXPLOS-PYROTECH, 34, 144 (2009)
  3. Patri M, Rath SK, Suryavansi UG, J. Appl. Polym. Sci., 99(3), 884 (2006)
  4. Ninan KN, Balaganggadharan VP, Catherine KB, Polymer, 32, 628 (1991)
  5. Cuksee MT, Allen HC, US Patent, 4,019,933 (1977).
  6. Yang PF, Yu YH, Wang SP, Li TD, Int. J. Polym. Anal. Charact., 16, 584 (2011)
  7. Nagappa R, Kurup MR, AIAA Paper No. 90 (1990).
  8. Smith PL, Bankaitis B, AIAA Paper No. 71 (1971).
  9. Boyars C, Klagers K (Eds.), Propellant manufacture, hazards and testing, Am. Chem. Soc., Washington D.C. (1969).
  10. Lomolder R, Plogmann F, Speller P, J. Coat. Technol., 69, 51 (1997)
  11. Bina CK, Kannan KG, Ninan KN, J. Therm. Anal. Calorim., 78, 753 (2004)
  12. Yang P, Li T, Li J, Int. J. Chem. Kinet., 45, 623 (2013)
  13. Lee S, Choi JH, Hong IK, Lee JW, J. Ind. Eng. Chem., In Press (2014).
  14. Manjari R, Pandureng LP, Somasundaran UI, Sriram T, J. Appl. Polym. Sci., 51(3), 435 (1994)
  15. Panicker SS, Ninan KN, J. Appl. Polym. Sci., 63(10), 1313 (1997)
  16. Rath SK, Ishack AM, Suryavansi UG, Chandrasekhar L, Patri M, Prog. Org. Coat., 62, 393 (2008)
  17. Nagle DJ, Celina M, Rintoul L, Fredericks PM, Polym. Degrad. Stabil., 92, 1446 (2007)
  18. Burel F, Feldman A, Bunel C, Polymer, 46(1), 15 (2005)
  19. Ducruet N, Delmotte L, Schrodj G, Stankiewicz F, Desgardin N, Vallat MF, Haidar B, J. Appl. Polym. Sci., 128(1), 436 (2013)
  20. Ramis X, Salla JM, Cadenato A, Morancho JM, J. Therm. Anal. Calorim., 72, 707 (2003)
  21. Vinnik RM, Roznyatovsky VA, J. Therm. Anal. Calorim., 75, 753 (2004)
  22. Sekkar V, Venkatachalam S, Ninan KN, Eur. Polym. J., 38, 169 (2002)
  23. Hailu K, Guthausen G, Becker W, Konig A, Polym. Test, 29, 513 (2010)
  24. Singh M, Kanungo BK, Bansal TK, J. Appl. Polym. Sci., 85(4), 842 (2002)
  25. Catherine KB, Krishnan K, Ninan KN, J. Therm. Anal. Calorim., 59, 93 (2000)
  26. Marscher N, Hocker H, Makromol. Chem., 191, 1843 (1990)
  27. Volker S, Rieckmann T, J. Anal. Appl. Pyrolysis, 62, 165 (2002)
  28. Kissinger HE, Anal. Chem., 29, 1702 (1957)
  29. Mazali CAI, Felisberti MI, Eur. Polym. J., 45, 2222 (2009)
  30. Ozawa TJ, J. Therm. Anal. Calorim., 2, 301 (1970)
  31. Flynn JH, Wall LA, Polym. Lett., 4, 323 (1966)
  32. Flynn JH, J. Therm. Anal. Calorim., 27, 95 (1983)
  33. Chang WL, J. Appl. Polym. Sci., 53(13), 1759 (1994)
  34. Prime RB, Polym. Eng. Sci., 13, 365 (1973)
  35. Lopez LM, Cosgrove AB, Hernandez-Ortiz JP, Osswald TA, Polym. Eng. Sci., 47(5), 675 (2007)
  36. Young RJ, Lowell PA, Introduction to Polymers, 2nd Ed., CRC Press, Great Britain (2000).
  37. Osswald TA, Menges G, Material Science of Polymers for Engineers, 2nd Ed., Hanser-Gardner, Cincinnati (1996)
  38. Kamal MR, Sourour S, Polym. Eng. Sci., 13, 59 (1973)
  39. Kamal MR, Polym. Eng. Sci., 14, 231 (1979)
  40. Ryan ME, Dutta A, Polymer, 20, 203 (1979)