화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.4, 400-405, August, 2015
Methyltrimethoxysilane을 이용한 반사방지 코팅막의 성능 향상
Improvement of Performance of Anti-reflective Coating Film Using Methyltrimethoxysilane
E-mail:
초록
Tetraethylorthosilicate (TEOS)를 전구체로서 이용하여 제조된 기존의 반사방지(AR; anti-reflective) 코팅막은 대부분 수분을 쉽게 흡수할 뿐만 아니라 낮은 내마모성을 갖는다. 본 연구에서는 AR 코팅막의 투과율, 소수성 및 내마모성을 향상 할 목적으로 전구체로서 methyltrimethoxysilane (MTMS)를 사용하고 불소 실란, 산 촉매, 염기 촉매 및 산-염기 2단계 촉매를 첨가하여 다양한 AR 코팅막을 제조하였다. 제조된 AR 코팅막은 UV-Vis, 접촉각 측정기, AFM, 연필경도 및 부착성 시험을 통해 특성을 분석하였다. 그 결과, 경화온도가 300 ℃일 때 코팅되지 않은 유리 기판의 투과율은 90.5% 인 반면, AR 코팅된 유리 기판의 투과율은 94.8%로 증가하였다. 불소 실란을 첨가한 경우, 소수성이 크게 향상되었음을 나타내듯이 AR 코팅막 표면에서의 접촉각은 96.3°에서 108°까지 증가하였다. AR 코팅막의 내마모성은 산 촉매에 의해 향상되었으며, 그것의 투과율은 염기 촉매에 의해 증가하였다. 산-염기 2단계 촉매 반응에 의해 제조한 AR 코팅막의 경우, 상승 효과에 의해 촉매의 도입 없이 제조된 AR 코팅막과 비교하여 투과율 및 내마모성이 향상되었다.
Traditional anti-reflective (AR) coating films prepared using tetraethylorthosilicate (TEOS) as a precursor absorbs water easily in addition to having a weak abrasion resistance. To improve the transmittance, hydrophobicity and abrasion resistance of AR coating film, various AR coating films were prepared using methyltrimethoxysilane (MTMS) as a precursor in addition to introducing a fluoroalkylsilane, acid catalyst, base catalyst and acid-base two step catalyst. The prepared AR coating films were then characterized by UV-Vis spectroscopy, contact angle analyzer, atomic force microscope (AFM), pencil scratch hardness test and cross-cut test. As a result, the transmittance of bare glass was 90.5%, while that of AR coating glass increased to 94.8% at curing temperature of 300 ℃. When the fluoroalkylsilane was added, the water contact angle of AR coating film increased from 96.3° to 108°, indicating that the hydrophobicity of the film was greatly improved. The abrasion resistance of AR coating film was also improved by the acid catalyst, whereas the transmittance increased by the base catalyst. In the case of AR coating film prepared using an acid-base two step catalyzed reaction, both the transmittance and abrasion resistance of the film was synergistically enhanced as compared with those of AR coating films prepared without introduction of a catalyst.
  1. Chen DG, Sol. Energy Mater. Sol. Cells, 68(3-4), 313 (2001)
  2. Nostell P, Roos A, Karlsson B, Sol. Energy Mater. Sol. Cells, 54(1), 223 (1998)
  3. Kesmez O, Burunkaya E, Kiraz N, Camurlu HE, Asilturk M, Arpac E, J. Non-Cryst. Solids, 357, 3130 (2011)
  4. Glaubitt W, Lobmann P, J. European Ceram. Soc., 32, 2995 (2012)
  5. Bautista MC, Morales A, Sol. Energy Mater. Sol. Cells, 80(2), 217 (2003)
  6. Cathro K, Constable D, Solaga T, Sol. Energy, 32, 573 (1984)
  7. Brinker CJ, scherer GW, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, 788-791, Academic Press, San Diego, USA (1990).
  8. Kim HS, Kim YH, Choi JY, Trans. Korean Hydrogen New Energy Soc., 25, 145 (2014)
  9. Zhang XX, Xia BB, Ye HP, Zhang YL, Xiao B, Yan LH, Lv HB, Jiang B, J. Mater. Chem., 22, 13132 (2012)
  10. Ye HP, Zhang XX, Zhang YL, Ye LQ, Xiao B, Lv HB, Jiang B, Sol. Energy Mater. Sol. Cells, 95(8), 2347 (2011)
  11. Wu G, Wang J, Shen J, Yang T, Zhang Q, Zhou B, Deng Z, Fan B, Zhou D, Zhang F, Mater. Res. Bull., B78, 135 (2000)
  12. Wu GM, Wang J, Shen J, Yang TH, Zhang QY, Zhou B, Deng ZH, Fan B, Zhou DP, Zhang FH, Mater. Res. Bull., 36(12), 2127 (2001)
  13. Wang J, Wu G, Shen J, Yang T, Zhang Q, Zhou B, Deng Z, J. Sol-Gel Sci. Technol., 18, 219 (2000)
  14. Bhagat SD, Rao AV, Appl. Surf. Sci., 252(12), 4289 (2006)
  15. Kim JY, Hwang JH, Lim TY, Lee MJ, Hyun SK, Kim JH, J. Photopolym Sci. Technol., 3, 65 (2013)
  16. Yoo BR, Jung DE, Polym. Sci. Technol., 20, 124 (2009)
  17. Ahn JH, Kim I, Ha CS, Polym. Sci. Technol., 20, 141 (2009)
  18. Yu DS, Kim IS, Ha JW, J. Korean Oph. Opt. Soc., 13, 37 (2008)
  19. Kesmez O, Camurlu HE, Burunkaya E, Arpac E, Ceram. Int., 36, 391 (2010)