Applied Chemistry for Engineering, Vol.26, No.4, 505-510, August, 2015
메틸렌피페라지노메틸-비스-포스폰산 금속염으로 처리된 시험편의 연소성
Combustive Properties of Specimens Treated with Methylenepiperazinomethyl-Bis-Phosphonic Acid (Mn+)s
E-mail:
초록
이 연구에서는 메틸렌피페라지노메틸-비스-포스폰산 금속염(PIPEABPMn+)과 메틸렌피페라지노메틸-비스-포스폰산(PIPEABP)으로 처리된 리기다 소나무의 연소성을 시험하였다. 15 wt%의 메틸렌피페라지노메틸-비스-포스폰산 금속염과 메틸렌피페라지노메틸-비스-포스폰산 수용액으로 각각 리기다 소나무에 3회 붓칠하여 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1)를 이용하여 연소성을 시험하였다. 그 결과, 메틸렌피페라지노메틸-비스-포스폰산 금속염으로 처리한 시험편은 메틸렌피페라지노메틸-비스-포스폰산을 처리한 시험편에 비해 최대질량감소율(MLR peak)이 (0.104~0.121) g/s으로 낮았다. 그리고 금속염으로 처리한 시험편(PIPEABPMn+)은 메틸렌피페라지노메틸-비스-포스폰산 알루미늄염(PIPEABPAl3+)으로 처리한 시험편을 제외하고, 금속염으로 처리하지 않은 시험편(PIPEABP)보다 낮은 총연기발생률(TSRR), (224.4~484.0) m2/m2과 낮은 CO mean (0.0537~0.0628) kg/kg 값을 보였다. 특별히 금속염 처리 시험편(PIPEABPMn+)의 2차 연기발생속도(2nd-SPR)는 (0.0117~0.0146) m2/s으로서 금속염으로 처리하지 않은 시험편(PIPEABP)에 비하여 낮았다. 따라서 메틸렌피페라지노메틸-비스-포스폰산 금속염으로 처리한 시험편은 처리하지 않은 시험편과 비교하여 연소 억제성을 부분적으로 향상시켰다.
This study was performed to test the combustive properties of pinus rigida specimens treated with methylpiperazinomethyl-bis-phosphonic acid Mn+ (PIPEABPMn+)s and methylpiperazinomethyl-bis-phosphonic acid (PIPEABP). Each pinus rigida plates were painted three times with 15 wt% PIPEABPMn+s or PIPEABP solutions at the room temperature. After drying specimens treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). It was indicated that the speed to peak mass loss rate (MLR peak), (0.104~0.121) g/s for specimens treated with PIPEABPMn+s was lower than that of PIPEABP plate. In addition, the total smoke release rate (TSRR), (224.4~484.0) m2/m2 for PIPEABPMn+s treated specimens except specimen treated with PIPEABPAl3+ and CO mean production (0.0537~0.0628) kg/kg was smaller than that of PIPEABP plate. In particular, for the specimens treated with PIPEABPMn+ by reducing the smoke production rate, the second-smoke production rate (2nd-SPR) (0.0117~0.0146) m2/s was lower than that of PIPEABP plate. It can thus be concluded that combustion-retardation properties of the treated PIPEABPMn+s were partially improved compared to those of the virgin plate.
Keywords:methylenepiperazinomethyl-bis-phosphonic acid Mn+ (PIPEABPMn+);peak mass loss rate (MLR peak);total smoke release rate (TSRR);CO mean production
- Lee PW, Kwon JH, Mogjae-Gonghak, 11(5), 16 (1983)
- Mcknight TS, The Hygroscopicity of Wood Treated With Fire-Retarding Compounds, Fore. Prod. Res. Branch, Dep. of Forestry, Canada. Report No. 190 (1962).
- Middleton JC, Dragoner SM, Winters FT, Fore. Prod. J., 15(12), 463 (1965)
- Goldstein IS, Dreher WA, Non-Hygroscopic A, Froe. Prod. J., 11(5), 235 (1961)
- Kozlowski R, Hewig M, 1st Int Conf. Progress in Flame Retardancy and Flammability Testing, Pozman, Poland, Institute of Natural Fibres (1995).
- Stevens R, Daan SE, Bezemer R, Kranenbarg A, Polym. Degrad. Stabil., 91(4), 832 (2006)
- Chung YJ, Kim Y, Kim S, J. Ind. Eng. Chem., 15(6), 888 (2009)
- Chung YJ, J. Korean Ind. Eng. Chem., 18(3), 251 (2007)
- Hardy ML, Polym. Degrad. Stabil., 64(3), 545 (1999)
- Tanaka Y, Epoxy Resin Chemistry and Technology, Marcel Dekker, New York (1988).
- Babrauskas V, New Technology to Reduce Fire Losses and Costs, Eds. Grayson SJ, Smith DA, Elsevier Appied Science Publisher, London, UK. (1986).
- Hirschler MM, Thermal Decomposition and Chemical Composition, 239, ACS Symposium Series 797 (2001).
- ISO 5660-1, Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 1: Heat Release Rate (Cone Calorimeter Method), Genever (2002).
- Korean Patent, Organic Phosphorus-Nitrogen Compounds, Manufacturing Method and Compositions of Flame Retardants Containing Organic Phosphorus-Nitrogen Compounds, No. 10-2011-0034978 (2011).
- Chung YJ, Jin E, J. Korean Oil Chemist’s Soc., 30(1), 1 (2013)
- Park MH, Chung YJ, Fire Sci. Eng., 28(6), 28 (2014)
- Jin E, Chung YJ, Fire Sci. Eng., 27(6), 70 (2013)
- Grexa O, Horvathova E, Besinova O, Lehocky P, Polym. Degrad. Stabil., 64(3), 529 (1999)
- Cischem Com, Flame Retardants, Chischem. Com. CO., Ltd, (2009).
- Kotz JC, Treichel PM, Weaver GC, electron Transfer Reactions, Chemistry & Chemical Reactivity, Sixth Ed., Thomson Learning, Inc., Toronto, Canada (2006).
- Jin E, Chung YJ, Fire Sci. Eng., 28(3), 55 (2014)
- ISO 5660-2, Reaction-to-Fire Tests.Heat Release, Smoke Production and Mass Loss Rate-Part 2: Smoke Production Rate Heat (Dynamic Measurement), Genever (2002).
- Babrauskas V, The SFPE Handbook of Fire Protection Engineering, Fourth Ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
- Quintire JG, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).
- Mourituz AP, Mathys Z, Gibson AG, Compos. Pt. A-Appl. Sci. Manuf., 38(7), 1040 (2005)
- Hirscher MM, Polymer, 25, 405 (1984)
- Zhang J, Jiang DD, Wilkie CA, Polym. Degrad. Stabil., 91, 298 (2006)
- Chung YJ, Lim HM, Jin E, Oh JK, Appl. Chem. Eng., 22(4), 439 (2011)
- Berns RS, Billmeyer and Saltszman’s Principles of Color Technology, Wiley Intersciences (2000).
- Spearpoint MJ, Quintiere JG, Combust. Flame, 123(3), 308 (2000)
- Ishihara S, Wood Resh. Tech. Notes, 16(5), 49 (1981)