화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.4, 505-510, August, 2015
메틸렌피페라지노메틸-비스-포스폰산 금속염으로 처리된 시험편의 연소성
Combustive Properties of Specimens Treated with Methylenepiperazinomethyl-Bis-Phosphonic Acid (Mn+)s
E-mail:
초록
이 연구에서는 메틸렌피페라지노메틸-비스-포스폰산 금속염(PIPEABPMn+)과 메틸렌피페라지노메틸-비스-포스폰산(PIPEABP)으로 처리된 리기다 소나무의 연소성을 시험하였다. 15 wt%의 메틸렌피페라지노메틸-비스-포스폰산 금속염과 메틸렌피페라지노메틸-비스-포스폰산 수용액으로 각각 리기다 소나무에 3회 붓칠하여 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1)를 이용하여 연소성을 시험하였다. 그 결과, 메틸렌피페라지노메틸-비스-포스폰산 금속염으로 처리한 시험편은 메틸렌피페라지노메틸-비스-포스폰산을 처리한 시험편에 비해 최대질량감소율(MLR peak)이 (0.104~0.121) g/s으로 낮았다. 그리고 금속염으로 처리한 시험편(PIPEABPMn+)은 메틸렌피페라지노메틸-비스-포스폰산 알루미늄염(PIPEABPAl3+)으로 처리한 시험편을 제외하고, 금속염으로 처리하지 않은 시험편(PIPEABP)보다 낮은 총연기발생률(TSRR), (224.4~484.0) m2/m2과 낮은 CO mean (0.0537~0.0628) kg/kg 값을 보였다. 특별히 금속염 처리 시험편(PIPEABPMn+)의 2차 연기발생속도(2nd-SPR)는 (0.0117~0.0146) m2/s으로서 금속염으로 처리하지 않은 시험편(PIPEABP)에 비하여 낮았다. 따라서 메틸렌피페라지노메틸-비스-포스폰산 금속염으로 처리한 시험편은 처리하지 않은 시험편과 비교하여 연소 억제성을 부분적으로 향상시켰다.
This study was performed to test the combustive properties of pinus rigida specimens treated with methylpiperazinomethyl-bis-phosphonic acid Mn+ (PIPEABPMn+)s and methylpiperazinomethyl-bis-phosphonic acid (PIPEABP). Each pinus rigida plates were painted three times with 15 wt% PIPEABPMn+s or PIPEABP solutions at the room temperature. After drying specimens treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). It was indicated that the speed to peak mass loss rate (MLR peak), (0.104~0.121) g/s for specimens treated with PIPEABPMn+s was lower than that of PIPEABP plate. In addition, the total smoke release rate (TSRR), (224.4~484.0) m2/m2 for PIPEABPMn+s treated specimens except specimen treated with PIPEABPAl3+ and CO mean production (0.0537~0.0628) kg/kg was smaller than that of PIPEABP plate. In particular, for the specimens treated with PIPEABPMn+ by reducing the smoke production rate, the second-smoke production rate (2nd-SPR) (0.0117~0.0146) m2/s was lower than that of PIPEABP plate. It can thus be concluded that combustion-retardation properties of the treated PIPEABPMn+s were partially improved compared to those of the virgin plate.
  1. Lee PW, Kwon JH, Mogjae-Gonghak, 11(5), 16 (1983)
  2. Mcknight TS, The Hygroscopicity of Wood Treated With Fire-Retarding Compounds, Fore. Prod. Res. Branch, Dep. of Forestry, Canada. Report No. 190 (1962).
  3. Middleton JC, Dragoner SM, Winters FT, Fore. Prod. J., 15(12), 463 (1965)
  4. Goldstein IS, Dreher WA, Non-Hygroscopic A, Froe. Prod. J., 11(5), 235 (1961)
  5. Kozlowski R, Hewig M, 1st Int Conf. Progress in Flame Retardancy and Flammability Testing, Pozman, Poland, Institute of Natural Fibres (1995).
  6. Stevens R, Daan SE, Bezemer R, Kranenbarg A, Polym. Degrad. Stabil., 91(4), 832 (2006)
  7. Chung YJ, Kim Y, Kim S, J. Ind. Eng. Chem., 15(6), 888 (2009)
  8. Chung YJ, J. Korean Ind. Eng. Chem., 18(3), 251 (2007)
  9. Hardy ML, Polym. Degrad. Stabil., 64(3), 545 (1999)
  10. Tanaka Y, Epoxy Resin Chemistry and Technology, Marcel Dekker, New York (1988).
  11. Babrauskas V, New Technology to Reduce Fire Losses and Costs, Eds. Grayson SJ, Smith DA, Elsevier Appied Science Publisher, London, UK. (1986).
  12. Hirschler MM, Thermal Decomposition and Chemical Composition, 239, ACS Symposium Series 797 (2001).
  13. ISO 5660-1, Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 1: Heat Release Rate (Cone Calorimeter Method), Genever (2002).
  14. Korean Patent, Organic Phosphorus-Nitrogen Compounds, Manufacturing Method and Compositions of Flame Retardants Containing Organic Phosphorus-Nitrogen Compounds, No. 10-2011-0034978 (2011).
  15. Chung YJ, Jin E, J. Korean Oil Chemist’s Soc., 30(1), 1 (2013)
  16. Park MH, Chung YJ, Fire Sci. Eng., 28(6), 28 (2014)
  17. Jin E, Chung YJ, Fire Sci. Eng., 27(6), 70 (2013)
  18. Grexa O, Horvathova E, Besinova O, Lehocky P, Polym. Degrad. Stabil., 64(3), 529 (1999)
  19. Cischem Com, Flame Retardants, Chischem. Com. CO., Ltd, (2009).
  20. Kotz JC, Treichel PM, Weaver GC, electron Transfer Reactions, Chemistry & Chemical Reactivity, Sixth Ed., Thomson Learning, Inc., Toronto, Canada (2006).
  21. Jin E, Chung YJ, Fire Sci. Eng., 28(3), 55 (2014)
  22. ISO 5660-2, Reaction-to-Fire Tests.Heat Release, Smoke Production and Mass Loss Rate-Part 2: Smoke Production Rate Heat (Dynamic Measurement), Genever (2002).
  23. Babrauskas V, The SFPE Handbook of Fire Protection Engineering, Fourth Ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
  24. Quintire JG, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).
  25. Mourituz AP, Mathys Z, Gibson AG, Compos. Pt. A-Appl. Sci. Manuf., 38(7), 1040 (2005)
  26. Hirscher MM, Polymer, 25, 405 (1984)
  27. Zhang J, Jiang DD, Wilkie CA, Polym. Degrad. Stabil., 91, 298 (2006)
  28. Chung YJ, Lim HM, Jin E, Oh JK, Appl. Chem. Eng., 22(4), 439 (2011)
  29. Berns RS, Billmeyer and Saltszman’s Principles of Color Technology, Wiley Intersciences (2000).
  30. Spearpoint MJ, Quintiere JG, Combust. Flame, 123(3), 308 (2000)
  31. Ishihara S, Wood Resh. Tech. Notes, 16(5), 49 (1981)