화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.5, 795-800, September, 2015
난연제를 함유한 에틸렌-프로필렌-디엔-터모노머 고무컴파운드의 수명예측
Lifetime Prediction of Flame Retardant-Filled Ethylene-Propylene-Diene-Termonomer Rubber Compounds
E-mail:
초록
여러 가지 난연제(Sb2O3, 브롬 및 염소계 난연제)를 함유하는 에틸렌-프로필렌-디엔-터모노머(EPDM) 고무컴파운드의 수명을 예측하였다. 각 고무 컴파운드에 대해 120, 135, 150, 165 oC 온도조건에서 열노화를 진행하고 노화전후의 인장특성을 조사하였다. 본 연구에서는 노화전 파단신장률이 50%로 감소되는 시간을 수명이라 정의하고 Dakin-Arrhenius 방정식을 이용하여 수명을 예측하였다. 미충전 EPDM과 Sb2O3을 함유한 EPDM의 경우 상온에서 100년에 가까운 수명이 예측되었다. 그러나 브롬계 난연제를 단독 혹은 Sb2O3와 혼용한 EPDM의 경우 미충전EPDM 수명의 절반으로 감소하였다. 염소계 난연제를 단독 혹은 Sb2O3와 혼용한 EPDM의 경우 각각 90년과 82년으로 예측되었다.
The lifetime of ethylene-propylene-diene-termonomer (EPDM) based rubber compounds with various flame retardants (FRs) including antimony trioxide (Sb2O3), halogenated (Br, Cl) materials and their combinations with Sb2O3 have been explored in this study. The tensile properties of the compounds have been evaluated before and after the thermal ageing over a range of temperatures, 120, 135, 150 and 165 oC for different span of time. A 50% reduction in elongation at break (EB) due to thermal ageing is fixed as a failure criterion to predict the lifetime with the help of Dakin-Arrhenius equations. The predicted lifetime of the base EPDM and its Sb2O3-filled compounds shows almost 100 years at ambient temperature. However, the bromine containing flame retardant-filled EPDM as well as its combination with Sb2O3-filled EPDM compounds have reduced their lifetime to almost half of the lifetime of base EPDM. The predicted lifetime of EPDM compounds with chlorine containing FR and its combination with Sb2O3 shows around 90 years and 82 years, respectively.
  1. Gent A, Editor, Engineering with Rubber: How to Design Rubber Components, Hanser Publishers, New York, 1992.
  2. Ciullo PA, Hewitt N, The Rubber Formulary, Noyes Publications, New York, 2003.
  3. Bhowmick AK, Stephens HL, Editors, Handbook of Elastomers, Marcel Dekker, New York, 2001.
  4. Orasa P, Somjai C, J. Sci. Technol., 32, 299 (2010)
  5. Seymour RB, Editor, Additives for Plastics, Academic Press, New York, 1978.
  6. Karak N, Maiti S, J. Appl. Polym. Sci., 68(6), 927 (1998)
  7. Tan G, Hua Y, Song L, Procedia Eng., 62, 371 (2013)
  8. Yu L, Wang WJ, Xiao WD, Polym. Degrad. Stabil., 86, 69 (2004)
  9. Chang ZH, Guo F, Chen JF, Yu JH, Wang GQ, Polym. Degrad. Stabil., 92, 1204 (2007)
  10. Nah C, Oh J, Mensah B, Jeong KU, Ahn DU, Kim SJ, Lee Y, Nam SH, J. Appl. Polym. Sci., 132, 41324 (2015)
  11. Brown RP, RAPRA Rewview Report, 13, 3 (2003)
  12. Celina M, Gillen KT, Assink RA, Polym. Degrad. Stabil., 90, 395 (2005)
  13. Brown RP, Forrest MJ, RAPRA Review Reports, 10, 2 (2000)
  14. Gillen KT, Bernstein R, Celina M, Polym. Degrad. Stabil., 87, 335 (2005)
  15. Gillen KT, Celina M, Keenan MR, Rubber Chem. Technol., 73, 265 (2000)
  16. Gillen KT, Celina M, Bernstein R, Polym. Degrad. Stabil., 82, 25 (2003)
  17. Dakin TW, Electrotechnol., 66, 123 (1960)
  18. Dakin TW, Trans. Am. Inst. Elect. Eng., 66, 113 (1984)
  19. Nasir M, Tech GK, Eur. Polym. J., 24, 733 (1988)
  20. Lyubchanskaya LI, Kuzminski AS, Rubber Chem. Technol., 34, 922 (1961)
  21. Torikai A, Chigita KI, Okisaki F, Nagata M, J. Appl. Polym. Sci., 58(4), 685 (1995)
  22. Kaspersma J, Doumen C, Munro S, Prins AM, Polym. Degrad. Stabil., 77, 325 (2002)
  23. Jakab E, Uddin MA, Bhaskar T, Sakata YJ, J. Anal. Appl. Pyrolysis, 69, 83 (2003)