화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.9, 1727-1732, September, 2015
Fe-aminoclay-entrapping electrospun polyacrylonitrile nanofibers (FeAC-PAN NFs) for environmental engineering applications
E-mail:,
Electrospun polyacrylonitrile nanofibers (PAN NFs) with entrapped water-soluble Fe-aminoclay (FeAC) [FeAC-PAN NFs] were prepared. Slow dropwise addition of water-soluble FeAC into a PAN solution, less aggregated of FeAC into electrospun PAN NFs was one-pot evolved without FeAC post-decoration onto as-prepared PAN NFs. Taking into consideration both the Fe3+ source in FeAC and the improved surface hydrophilicity, the feasibility of Fentonlike reaction for decolorization of cationic model dye methylene blue (MB) under 6 hrs UV-light irradiation was established. In the case where FeAC-PAN NFs were enhanced by hydrogen peroxide (H2O2) injection, the apparent kinetic reaction rates were increased relative to those for the PAN NFs. Thus, our flexible FeAC-PAN NF mats can be effectively utilized in water/waste treatment and other environmental engineering applications.
  1. Pham QP, Sharma U, Mikos AG, Tissue Eng., 12, 1197 (2006)
  2. Shin SH, Purevdorj O, Castano O, Planell JA, Kim HW, J. Tissue Eng., 3, 2041731412443530 (2012).
  3. Jiang T, Carbone EJ, Lo KWH, Laurencin CT, Prog. Polym. Sci. (2015), DOI:10.1016/j.progpolymsci.2014.12.001.
  4. Nie HL, Ma ZH, Fan ZX, Branford-White CJ, Ning X, Zhu LM, Han J, Int. J. Pharm., 373, 4 (2009)
  5. Yu DG, Branford-White C, Li L, Wu XM, Zhu LM, J. Appl. Polym. Sci., 117(3), 1509 (2010)
  6. Kanani AG, Bahrami SH, Trends Biomater. Artif. Organs, 24, 93 (2010)
  7. Zhang LF, Aboagye A, Kelkar A, Lai CL, Fong H, J. Mater. Sci., 49(2), 463 (2014)
  8. Schiffman JD, Schauer CL, Polym. Rev., 48, 317 (2008)
  9. Vu D, Li ZY, Zhang HN, Wang W, Wang ZJ, Xu XR, Dong B, Wang C, J. Colloid Interface Sci., 367, 429 (2012)
  10. Luo C, Wang JQ, Jia P, Liu YX, An JH, Cao B, Pan K, Chem. Eng. J., 262, 775 (2015)
  11. Nataraj SK, Yang KS, Aminabhavi TM, Prog. Polym. Sci, 37, 487 (2012)
  12. Xiao S, Wu S, Shen M, Guo R, Huang Q, Wang S, Shi X, ACS Appl. Mater. Interfaces, 1, 2848 (2009)
  13. Zhan S, Zhu D, Ren G, Shen Z, Qiu M, Yang S, Yu H, Li Y, ACS Appl. Mater. Interfaces, 6, 16841 (2014)
  14. Lee HU, Park SY, Lee SC, Seo JH, Son B, Kim H, Yun HJ, Lee GW, Lee SM, Nam B, Lee JW, Huh YS, Jeon C, Kim HJ, Lee J, Appl. Catal. B: Environ., 144, 83 (2014)
  15. Zhang CL, Yu SH, Chem. Soc. Rev., 43, 4423 (2014)
  16. Ryu WH, Shin JW, Jung JW, Kim ID, J. Mater. Chem., 1, 3239 (2013)
  17. Shin JW, Ryu WH, Park SK, Kim ID, ACS Nano, 7, 7330 (2013)
  18. Park HS, Choi BG, Hong WH, Jang SY, J. Colloid Interface Sci., 406, 24 (2013)
  19. Mann S, Burkett SL, Davis SA, Fowler CE, Mendelson NH, Sims SD, Walsh D, Whilton NT, Chem. Mater., 9, 2300 (1997)
  20. Lee YC, Kim EJ, Ko DA, Yang JW, J. Hazard. Mater., 196, 101 (2011)
  21. Lee YC, Jin ES, Jung SW, Kim YM, Chang KS, Yang JW, Kim SW, Kim YO, Shin HJ, Sci. Rep., 3, 1292 (2013)
  22. Lee YC, Park WK, Yang JW, J. Hazard. Mater., 190(1-3), 652 (2011)
  23. Ruiz-Hitzky E, Aranda P, Darder M, Rytwo G, J. Mater. Chem., 20, 9306 (2010)
  24. Lee YC, Lee HU, Lee M, Kim J, Huh YS, J. Nanosci. Nanotechnol., DOI:10.1166/jnn.2015.11911 (2015)
  25. Persano L, Camposeo A, Teckmen C, Pisignano D, Macromol. Mater. Eng., 298, 504 (2013)
  26. Lee HU, Kang YH, Jeong SY, Koh K, Kim JP, Bae JS, Cho CR, Polym. Degrad. Stabil., 96, 1204 (2011)
  27. Lee YC, Chang SJ, Choi MH, Jeon TJ, Ryu T, Huh YS, Appl. Catal. B: Environ., 142-143, 494 (2013)
  28. Owens DK, Wendt RC, J. Appl. Polym. Sci., 13, 1741 (1969)
  29. Lee HU, Jeong YS, Jeong SY, Park SY, Bae JS, Kim HG, Cho CR, Appl. Surf. Sci., 254(18), 5700 (2008)
  30. Zubir NA, Yacou C, Motuzas J, Zhang X, Costa JCDD, Sci. Rep., 4, 4594 (2014)
  31. Kalal S, Chauhan NPS, Ameta N, Ameta R, Kumar S, Punjabi PB, Korean J. Chem. Eng., 31(12), 2183 (2014)