화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.9, 1749-1758, September, 2015
Instantaneous NO release from ellipsoidal particles during char combustion in a hot gas with fluctuating temperature
E-mail:
We have established the instantaneous governing equations for NO release during char combustion of nonspherical particles theoretically. The instantaneous released NO mass variations, the instantaneous char oxidation reaction rates, and the instantaneous NO reduction reaction rates of char particles were computed numerically under different fluctuation amplitudes of gas temperature, kinetic parameters of char oxidation reaction and NO reduction reaction, and particle aspect ratios. The gas temperature fluctuation results in a faster NO release rate, a faster char oxidation reaction rate, and a faster NO reduction reaction rate during the whole char combustion processes. The activation energy of char oxidation reaction has obvious influence on the NO release and char combustion processes. The kinetic parameters of NO reduction reaction have no contribution to the conversion time. Under the same particle surface area, the conversion rate of char nitrogen to NO increases with the increase in the particle aspect ratio.
  1. Houshfar E, Wang L, Vaha-Savo N, Brink A, Lovas T, Clean Technol. Environ., 16, 1339 (2014)
  2. Zhao K, Jensen AD, Glarborg P, Energy Fuels, 28(7), 4684 (2014)
  3. Sami M, Annamalai K, Wooldridge M, Prog. Energy Combust. Sci., 27(2), 171 (2001)
  4. Johansson LS, Tullin C, Leckner B, Sjovall P, Biomass Bioenerg., 25(4), 435 (2003)
  5. Hedman PO, Warren DL, Combust. Flame, 100, 185 (1995)
  6. Zhang HT, Zhang J, Fuel, 89(5), 1177 (2010)
  7. Shang Q, Zhang J, Zhou LX, Fuel, 84(16), 2071 (2005)
  8. Zhang HT, Zhang J, Combust. Flame, 153(1-2), 334 (2008)
  9. Pang J, Zhang J, J. Anal. Appl. Pyrolysis, 108, 196 (2014)
  10. Zhang J, Zhou LX, Fuel, 80(2), 289 (2001)
  11. Goshayeshi B, Sutherland JC, Combust. Flame, 161(7), 1900 (2014)
  12. Bharadwaj A, Baxter LL, Robinson AL, Energy Fuels, 18(4), 1021 (2004)
  13. Backreedy RI, Fletcher LM, Jones JM, Ma L, Pourkashanian M, Williams A, P. Combust. Inst., 30, 2955 (2005)
  14. Guo Q, Chen XL, Liu HF, Fuel, 94(1), 551 (2012)
  15. Gubba SR, Ma L, Pourkashanian M, Williams A, Fuel Process. Technol., 92(11), 2185 (2011)
  16. Mando M, Rosendahl L, Yin C, Sorensen H, Fuel, 89(10), 3051 (2010)
  17. Cui HP, Grace JR, Chem. Eng. Sci., 62(1-2), 45 (2007)
  18. Li J, Zhang J, Combust. Sci. Technol., submitted.
  19. Turns SR, An Introduction to Combustion: Concepts and applications, McGraw-Hill, New York (1996).
  20. Grow DT, Combust. Flame, 80, 209 (1990)
  21. Momeni M, Yin C, Kær SK, Hansen TB, Jensen PA, Glarborg P, Energy Fuels, 27, 507 (2012)
  22. Momeni M, Yin CG, Kaer SK, Hvid SL, Energy Fuels, 27(2), 1061 (2013)
  23. Levy JM, Chana LK, Sarofima AF, Beera JM, Symposium (International) on Combustion, 18, 111 (1981)
  24. Jones JM, Patterson PM, Pourkashanian M, Williams A, Arenillas A, Rubiera F, Pis JJ, Fuel, 78, 1171 (1999)
  25. Wang W, Brown SD, Hindmarsh CJ, Thomas KM, Fuel, 73, 1381 (1994)
  26. Smoot LD, Smith PJ, Coal combustion and gasification, Plenum Press, New York (1985).
  27. Madden SJ, Celestial Mechanics, 2, 217 (1970)