Korean Journal of Chemical Engineering, Vol.32, No.9, 1798-1803, September, 2015
A two-dimensional analytical model of laminar flame in lycopodium dust particles
E-mail:
A two-dimensional analytical model is presented to determine the flame speed and temperature distribution of micro-sized lycopodium dust particles. This model is based on the assumptions that the particle burning rate in the flame front is controlled by the process of oxygen diffusion and the flame structure consists of preheat, reaction and post flame zones. In the first step, the energy conservation equations for fuel-lean condition are expressed in twodimensions, and then these differential equations are solved using the required boundary condition and matching the
temperature and heat flux at the interfacial boundaries. Consequently, the obtained flame temperature and flame speed distributions in terms of different particle diameters and equivalence ratio for lean mixture are compared with the corresponding experimental data for lycopodium dust particles. Consequently, it is shown that this two-dimensional model demonstrates better agreement with the experimental results compared to the previous models.
Keywords:Lycopodium Dust Particles;Two-dimensional Analytical Model;Laminar Flame Speed;Flame Temperature Distribution
- Krazinski JL, Buckius RO, Krier H, Prog. Energy Combust. Sci., 5, 31 (1979)
- Hertzberg M, Cashdollar KL, Zlochower IA, Symp. (Int.) Combust., 21, 303 (1988)
- Berlad AL, Ross H, Facca L, Tangirala V, Combust. Flame, 82, 449 (1990)
- Sun JH, Dobashi R, Hirano T, Symp. (Int.) Combust., 27, 2405 (1998)
- Proust C, Experimental determination of the maximum flame temperatures and of the laminar burning velocities for some combustible dust-air mixtures, Proceedings of the Fifth International Colloquium on Dust Explosions, Pultusk, Poland (1993).
- Shoshin Y, Dreizin E, Combust. Flame, 133(3), 275 (2003)
- Chen ZH, Fan BC, J. Loss Prev. Process Ind., 18(1), 13 (2005)
- Goroshin S, Kolbe M, Lee JHS, Symp. (Int.) Combust., 28, 2811 (2000)
- Han OS, Yashima M, Matsuda T, Matsui H, Miyake A, Ogawa T, J. Loss Prev. Process Ind., 13(6), 449 (2000)
- Han OS, Yashima M, Matsuda T, Matsui H, Miyake A, Ogawa T, J. Loss Prev. Process Ind., 14(3), 153 (2001)
- Proust C, J. Loss Prev. Process Ind., 19(1), 89 (2006)
- Proust C, J. Loss Prev. Process Ind., 19(2-3), 104 (2006)
- Bidabadi M, Rahbari A, Combust. Explos., 45, 278 (2009)
- Bidabadi M, Rahbari A, J. Mech. Sci. Technol., 23, 2417 (2009)
- Bidabadi M, Haghiri A, Rahbari A, Int. J. Therm. Sci., 49, 534 (2010)
- Bidabadi M, Shakibi A, Rahbari A, J. Taiwan Inst. Chem. Eng., 42, 180 (2011)
- Bidabadi M, Natanzi AHA, Mostafavi SA, Powder Technol., 217, 69 (2012)
- Gao W, Mogi T, Sun JH, Yu JL, Dobashi R, Powder Technol., 249, 168 (2013)
- Jadidi M, Bidabadi M, Hosseini ME, Proc. Inst. Mech. Eng. Part G, 223, 915 (2009)
- Goroshin S, Bidabadi M, Lee JHS, Combust. Flame, 105, 147 (1996)