Applied Chemistry for Engineering, Vol.26, No.5, 543-548, October, 2015
메조기공 Silicon/Carbon/CNF 음극소재 제조 및 전기화학적 특성
Synthesis and Electrochemical Characteristics of Mesoporous Silicon/Carbon/CNF Composite Anode
E-mail:
초록
리튬이온 전지용 음극소재의 용량 및 사이클 성능을 향상시키기 위해서 Si/C/CNF 합성물의 특성이 조사되었다. 제조과정으로는 SBA-15를 합성하고 볼밀링을 이용한 마그네슘환원을 통해 Si/MgO를 얻은 다음, Phenolic resin과 CNF를 이용해 탄화과정을 거쳐 최종적으로 산처리하여 Si/C/CNF 활물질을 합성하였다. 합성된 Si/C/CNF는 BET, XRD, FE-SEM 그리고 TGA를 이용하여 분석하였다. 50 ℃~70 ℃까지 온도에 따라 SBA-15를 합성한 결과 60℃에서 가장 큰 비표면적을 갖는 결과를 얻었다. 또한 LiPF6 (EC : DMC : EMC = 1 : 1 : 1 vol%) 전해질을 사용하여, 충방전, 사이클, CV와 임피던스 등과 같은 전기화학적 테스트를 수행하여 Si/C/CNF 전극의 이차전지 음극활물질로서 성능을 조사하였다. Si/C/CNF (Si : CNF = 97 : 3 중량비)를 이용한 전지의 용량은 1,947 mAh/g으로 다른 합성물보다 우수한 결과를 보였다. CNF 첨가량이 3 wt%에서 11 wt%로 증가함에 따라 용량 보존율이 84~77%로 안정성이 감소되었다. Si/C/CNF 합성소재 전극이 이차전지의 사이클 성능과 전기전도도를 개선할 수 있다는 것을 알 수 있었다.
Si/C/CNF composites as anode materials for lithium-ion batteries were examined to improve the capacity and cycle performance. Si/C/CNF composites were prepared by the fabrication process including the synthesis and magnesiothermic reduction of SBA-15 to obtain Si/MgO by ball milling and the carbonization of phenol resin with CNF and HCl etching. Prepared Si/C/CNF composites were then analysed by BET, XRD, FE-SEM and TGA. Among SBA-15 samples synthesized at reaction temperatures between 50 and 70 ℃, the SBA-15 at 60 ℃ showed the largest specific surface area. Also the electrochemical performances of Si/C/CNF composites as an anode electrode were investigated by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC : DMC : EMC = 1 : 1 : 1 vol%). The coin cell using Si/C/CNF composites (Si : CNF = 97 : 3 in weight) showed better capacity (1,947 mAh/g) than that of other composition coin cells. The capacity retention ratio decreased from 84% (Si : CNF= 97 : 3 in weight) to 77% (Si : CNF = 89 : 11 in weight). It was found that the Si/C/CNF composite electrode shows an improved cycling performance and electric conductivity.
- Eom K, Joshi T, Bordes A, Do I, Fuller TF, J. Power Sources, 249, 118 (2014)
- Zhang WJ, J. Power Sources, 196(1), 13 (2011)
- Yu BC, Hwa Y, Kim JH, Sohn HJ, Electrochim. Acta, 117, 430 (2014)
- Hwa Y, Kim WS, Yu BC, Kim JH, Hong SH, Sohn HJ, J. Power Sources, 252, 144 (2014)
- Tian H, Tan X, Xin F, Wang C, Han W, Nano Energy, 11, 490 (2015)
- Kaspar J, Graczyk-Zajac M, Lauterbach S, Kleebe HJ, Riedel R, J. Power Sources, 269, 164 (2014)
- Ukmar T, Planinsek O, Acta Pharm., 60, 373 (2010)
- Hong I, Scrosati B, Croce F, Solid State Ion., 232, 24 (2013)
- Ko HS, Choi JE, Lee JD, Appl. Chem. Eng., 25(6), 592 (2014)
- Park JY, Jung MZ, Lee JD, Appl. Chem. Eng., 26(1), 80 (2015)
- Zhang M, Hou X, Wang J, Li M, Hu S, Shao Z, Liu X, J. Alloy. Compd., 588, 206 (2014)
- Li XJ, Lei GT, Li ZH, Zhang Y, Xiao QZ, Solid State Ion., 261, 111 (2014)
- Rahmat N, Abdullah AZ, Mohamed AR, Am. J. Appl. Sci., 7, 1579 (2010)
- Wang YG, Zhang FY, Wang YQ, Ren JW, Li CL, Liu XH, Guo Y, Guo YL, Lu GZ, Mater. Chem. Phys., 115(2-3), 649 (2009)
- Yue L, Zhang WH, Yang JF, Zhang LZ, Electrochim. Acta, 125, 206 (2014)
- Zhang SS, J. Power Sources, 162(2), 1379 (2006)
- Kim SY, Kim BH, Yang KS, J. Electroanal. Chem., 705, 52 (2013)
- Wang H, Wu P, Shi HM, Tang WZ, Tang YW, Zhou YM, She PL, Lu TH, J. Power Sources, 274, 951 (2015)
- Kim YM, Ahn J, Yu SH, Chung DY, Lee KJ, Lee JK, Sung YE, Electrochim. Acta, 151, 256 (2015)