화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.5, 549-556, October, 2015
분무건조법을 이용한 한약추출물 해충기피 실리카 졸의 다공성 방충입자의 제조
Preparation of Porous Anti-Insect Repellent Powder Using Spray Drying of Medicinal Herbal Extracts Anti-Insect Repellent Silica Sol
E-mail:
초록
한약재에서 추출한 해충기피용액과 실리카를 혼합하여 해충기피 실리카 졸을 제조하고, 분무건조법을 이용하여 마이크로 단위의 해충기피용액이 포함된 다공성 구형 분말을 제조하였다. 분무건조법을 통해 제조된 해충기피 분말의 특성분석을 위해 해충기피 졸의 농도(해충기피용액, 실리카) 및 분무 건조 장비의 조건에 따라 분말 모폴로지, 입자크기별 입경분포, 열적 안정성 분석을 실시하였다. 해충기피 졸의 농도가 4, 7 wt% 및 10 wt%일 때 각각 평균 입자 크기가 8.3, 9.5 μm 및 11.7 μm 순으로 농도가 증가할수록 분말의 직경이 커졌다. 반면에 빠른 가스 주입속도 상태에서 노즐입구온도 및 용액주입속도 증가에 의한 분말 입경의 증가는 미미하였다. 또한, 열중량 분석법을 통하여, 구형의 다공성분말 안에 해충기피 용액이 담지 되어있고, 이들은 200 ℃까지 열적 안정성이 확보됨을 확인하였다. 분무건조를 통한 해충기피 분말은 평균 9~10 μm이고, 열적 안정성을 가지므로 컴파운딩 및 필름제조공정에 응용이 가능할 것으로 기대된다.
Anti-insect repellent silica sol from mixture with silica and anti-insect repellent solution extracted from medicinal herbs was prepared. The micron size porous sphere powder with anti-insect repellent solution was prepared by the spray drying method. The characteristic of anti-insect repellent powder using spray drying method was analyzed by FE-SEM, PSA, TGA with the concentration of anti-insect repellent sol (anti-insect repellent solution and silica) and conditions of spray drier. The average particle size of 4, 7 wt% and 10 wt% of anti-insect repellent sol concentration were 8.3, 9.5 μm and 11.7 μm, respectively. The particle size is increasing with high concentration of anti-insect repellent sol. Other hands, particle size as the temperature of inlet nozzle and velocity of sol injection were nearly same at high velocity of gas injection. Also, Anti-insect repellent impregnation in porous sphere powder were confirmed by TGA methode and its thermal property was stable up to 200 ℃. We expect that anti-insect repellent powder is applied for plastic compound and process of film manufacture.
  1. Lee YJ, Min SC, Na JH, Han JJ, Safe food, 6, 24 (2011)
  2. Lee SH, Jo HJ, Lee YJ, Han JJ, Korean J. Packag. Sci. Technol., 19, 81 (2013)
  3. Park JH, Ryu KY, Jee HJ, Lee BM, Gho HG, Korean J. Appl. Entomol., 47, 59 (2008)
  4. You AS, Choi YW, Jeong MH, Hong SS, Park YK, Jang HS, Park JY, Park KH, Korean J. Pestic. Sci., 15, 350 (2011)
  5. Leimann FV, Goncalves OH, Machado RAF, Bolzan A, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 29, 430 (2009)
  6. Nam JO, Choi CH, Kim J, Kang SM, Lee CS, Korean Chem. Eng. Res., 51(5), 597 (2013)
  7. Hwang S, Choi CH, Lee CS, Macromol. Res., 10. 1007/s13233-012-0048-8, 20(4), 422 (2012)
  8. Hwang S, Choi CH, Kim HC, Kim IH, Lee CS, Polym.(Korea), 36(2), 177 (2012)
  9. Hwang HS, Park I, Lee IK, Choi WJ, Lee SI, Lee JY, Appl. Chem. Eng., 23(4), 383 (2012)
  10. Liu WJ, Wu WD, Selomulya C, Chen XD, Langmuir, 27(21), 12910 (2011)
  11. Youn CK, Lim HM, Cha S, Kim DS, Lee SH, Korean J. Mater. Res., 22(10), 531 (2012)
  12. Iskandar F, Gradon L, Okuyama K, J. Colloid Interface Sci., 265(2), 296 (2003)
  13. Iskandar F, Lenggoro IW, Xia B, Okuyama K, J. Nanopart. Res., 3, 263 (2001)
  14. Kim YK, Kim KH, Lee JJ, Lee HS, Lee SG, Korean J. Appl. Entomol., 51, 389 (2012)
  15. Song JS, Lee CM, Lee SM, Kim DS, Choi YW, Lee DW, Korean J. Pestic. Sci., 17, 411 (2013)
  16. Lee DW, Choi HC, Kim TS, Park JK, Park JC, Yu HB, Lee SM, Cho HY, Korean J. Appl. Entomol., 48, 335 (2009)
  17. Jung HJ, Kim YB, Chang YH, Korean Chem. Eng. Res., 46(4), 722 (2008)
  18. Kim HS, J. Korean Ind. Eng. Chem., 27, 299 (1989)
  19. Takeuchi H, Nagira S, Yamamoto H, Kawashima Y, Int. J. Pharm., 293, 155 (2005)
  20. Wang AJ, Lu YP, Sun RX, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 460-465, 1 (2007)
  21. Sen D, Mazumder S, Melo JS, Khan A, Bhattyacharya S, D'Souza SF, Langmuir, 25(12), 6690 (2009)