Applied Chemistry for Engineering, Vol.26, No.5, 549-556, October, 2015
분무건조법을 이용한 한약추출물 해충기피 실리카 졸의 다공성 방충입자의 제조
Preparation of Porous Anti-Insect Repellent Powder Using Spray Drying of Medicinal Herbal Extracts Anti-Insect Repellent Silica Sol
E-mail:
초록
한약재에서 추출한 해충기피용액과 실리카를 혼합하여 해충기피 실리카 졸을 제조하고, 분무건조법을 이용하여 마이크로 단위의 해충기피용액이 포함된 다공성 구형 분말을 제조하였다. 분무건조법을 통해 제조된 해충기피 분말의 특성분석을 위해 해충기피 졸의 농도(해충기피용액, 실리카) 및 분무 건조 장비의 조건에 따라 분말 모폴로지, 입자크기별 입경분포, 열적 안정성 분석을 실시하였다. 해충기피 졸의 농도가 4, 7 wt% 및 10 wt%일 때 각각 평균 입자 크기가 8.3, 9.5 μm 및 11.7 μm 순으로 농도가 증가할수록 분말의 직경이 커졌다. 반면에 빠른 가스 주입속도 상태에서 노즐입구온도 및 용액주입속도 증가에 의한 분말 입경의 증가는 미미하였다. 또한, 열중량 분석법을 통하여, 구형의 다공성분말 안에 해충기피 용액이 담지 되어있고, 이들은 200 ℃까지 열적 안정성이 확보됨을 확인하였다. 분무건조를 통한 해충기피 분말은 평균 9~10 μm이고, 열적 안정성을 가지므로 컴파운딩 및 필름제조공정에 응용이 가능할 것으로 기대된다.
Anti-insect repellent silica sol from mixture with silica and anti-insect repellent solution extracted from medicinal herbs was prepared. The micron size porous sphere powder with anti-insect repellent solution was prepared by the spray drying method. The characteristic of anti-insect repellent powder using spray drying method was analyzed by FE-SEM, PSA, TGA with the concentration of anti-insect repellent sol (anti-insect repellent solution and silica) and conditions of spray drier. The average particle size of 4, 7 wt% and 10 wt% of anti-insect repellent sol concentration were 8.3, 9.5 μm and 11.7 μm, respectively. The particle size is increasing with high concentration of anti-insect repellent sol. Other hands, particle size as the temperature of inlet nozzle and velocity of sol injection were nearly same at high velocity of gas injection. Also, Anti-insect repellent impregnation in porous sphere powder were confirmed by TGA methode and its thermal property was stable up to 200 ℃. We expect that anti-insect repellent powder is applied for plastic compound and process of film manufacture.
- Lee YJ, Min SC, Na JH, Han JJ, Safe food, 6, 24 (2011)
- Lee SH, Jo HJ, Lee YJ, Han JJ, Korean J. Packag. Sci. Technol., 19, 81 (2013)
- Park JH, Ryu KY, Jee HJ, Lee BM, Gho HG, Korean J. Appl. Entomol., 47, 59 (2008)
- You AS, Choi YW, Jeong MH, Hong SS, Park YK, Jang HS, Park JY, Park KH, Korean J. Pestic. Sci., 15, 350 (2011)
- Leimann FV, Goncalves OH, Machado RAF, Bolzan A, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 29, 430 (2009)
- Nam JO, Choi CH, Kim J, Kang SM, Lee CS, Korean Chem. Eng. Res., 51(5), 597 (2013)
- Hwang S, Choi CH, Lee CS, Macromol. Res., 10. 1007/s13233-012-0048-8, 20(4), 422 (2012)
- Hwang S, Choi CH, Kim HC, Kim IH, Lee CS, Polym.(Korea), 36(2), 177 (2012)
- Hwang HS, Park I, Lee IK, Choi WJ, Lee SI, Lee JY, Appl. Chem. Eng., 23(4), 383 (2012)
- Liu WJ, Wu WD, Selomulya C, Chen XD, Langmuir, 27(21), 12910 (2011)
- Youn CK, Lim HM, Cha S, Kim DS, Lee SH, Korean J. Mater. Res., 22(10), 531 (2012)
- Iskandar F, Gradon L, Okuyama K, J. Colloid Interface Sci., 265(2), 296 (2003)
- Iskandar F, Lenggoro IW, Xia B, Okuyama K, J. Nanopart. Res., 3, 263 (2001)
- Kim YK, Kim KH, Lee JJ, Lee HS, Lee SG, Korean J. Appl. Entomol., 51, 389 (2012)
- Song JS, Lee CM, Lee SM, Kim DS, Choi YW, Lee DW, Korean J. Pestic. Sci., 17, 411 (2013)
- Lee DW, Choi HC, Kim TS, Park JK, Park JC, Yu HB, Lee SM, Cho HY, Korean J. Appl. Entomol., 48, 335 (2009)
- Jung HJ, Kim YB, Chang YH, Korean Chem. Eng. Res., 46(4), 722 (2008)
- Kim HS, J. Korean Ind. Eng. Chem., 27, 299 (1989)
- Takeuchi H, Nagira S, Yamamoto H, Kawashima Y, Int. J. Pharm., 293, 155 (2005)
- Wang AJ, Lu YP, Sun RX, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 460-465, 1 (2007)
- Sen D, Mazumder S, Melo JS, Khan A, Bhattyacharya S, D'Souza SF, Langmuir, 25(12), 6690 (2009)