화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.5, 563-568, October, 2015
리퀴리티게닌과 리퀴리틴을 담지한 에토좀의 특성 및 경피 전달
Characterization and Transdermal Delivery of Ethosomes Loaded with Liquiritigenin and Liquiritin
E-mail:
초록
배당체 리퀴리틴 및 그 아글리콘인 리퀴리티게닌은 항산화 및 항노화 활성이 뛰어난 한국산 감초 성분이다. 본 연구에서는 리퀴리티게닌과 리퀴리틴의 피부 전달시스템으로 에토좀을 제조하고 입자크기, 포집 효율 및 피부 투과능을 평가하였다. 리퀴리틴게닌의 경우 2 mM 농도까지 안정한 에토좀이 형성되었고, 리퀴리틴은 0.75 mM 농도까지 안정하게 형성되었다. 0.75 mM 리퀴리티게닌과 리퀴리틴을 함유한 에토좀의 입자크기는 각각 143.85, 158.90 nm이었으며, 포집 효율은 각각 47.51, 54.61%이었고 약물의 농도에 의존적으로 포집 효율이 증가하는 경향을 나타내었다. 피부투과실험을 수행한 결과, 리퀴리티게닌과 리퀴리틴 모두 에토좀이 일반 리포좀이나 에탄올 용액보다 더 우수한 피부 투과능을 보여주었다. 이는 0.50 mM 리퀴리틴게닌 및 리퀴리틴을 담지한 에토좀이 피부전달에 효과적이며, 항노화 및 항산화 화장품 제형으로서 이용 가능성이 있음을 시사한다.
Liquiritin and its aglycone, liquiritigenin are flavonoid found in licorice that show anti-oxidant and anti-aging properties. In this study, ethosomes loaded with hydrophobic liquiritigenin or liquiritin were prepared as a transdermal delivery system. The particle size, entrapment efficiency, and skin permeability of ethosomes were evaluated. Ethosome containing liquiritigenin was stable up to 2 mM and ethosome containing liquiritin was stable up to 0.75 mM concentration. The particle size of ethosomes containing 0.75 mM liquiritigenin and liquiritin was 143.85 and 158.90 nm, respectively and the entrapment efficiency was 47.51 and 54.61%, respectively. The entrapment efficiency was improved with increasing concentrations of drugs. Ethosomes loaded with liquiritigenin or liquiritin were superior in skin permeation ability compared to that of 20% ethanol solution and conventional liposomes. These results suggest that ethosomes containing 0.50 mM liquiritigenin or liquiritin are effective for the skin permeation and may be used as an antiaging and antioxidant ingredient in cosmetic formulation.
  1. Han SB, Gu HA, Kim SJ, Kim HJ, Kwon SS, Kim HS, Jeon SH, Hwang JP, Park SN, J. Soc. Cosmet. Sci. Korea, 39, 1 (2013)
  2. Wang S, Gue M, Cong J, Li S, J. Chromatogr. A, 1282, 167 (2013)
  3. Kim HJ, Bae JY, Jang HN, Park SN, J. Microbiol. Biotechnol., 41, 358 (2013)
  4. Yang EJ, Park GH, Song KS, Neurotoxicology, 39, 114 (2013)
  5. Thiele JJ, Schroeter C, Hsieh SN, Podda M, Packer L, Thiele J, Elsner P, Curr Probl Dermatol., 29, 26 (2001)
  6. Sylvie VS, Bonte F, J. Cosmetic Dermatol., 6, 75 (2007)
  7. Ahn YJ, Won BR, Kang MK, Kim JH, Park SN, J. Soc. Cosmet. Sci. Korea, 35, 125 (2009)
  8. Naqui A, Chance B, Ann. Rev. Biochem., 55, 137 (1986)
  9. Yang HG, Kim HJ, Kim HS, Park SN, Appl. Chem. Eng., 24(2), 190 (2013)
  10. Gu HA, Kim HS, Kim MJ, Yu ER, Joe G, Jang J, Kim B, Park SN, Appl. Chem. Eng., 24(6), 639 (2013)
  11. Kim SJ, Kwon SS, Jeon SH, Yu ER, Park SN, Int. J. Cosmet Sci., 36, 553 (2014)
  12. Park SN, Sun LM, Park MA, Kwon SS, Han SB, Polymer, 36, 705 (2012)
  13. Gu HA, Kim MJ, Kim HS, Ha JH, Yu ER, Park SN, Appl. Chem. Eng., 26(2), 165 (2015)
  14. Fang YP, Tsai YH, Wu PC, Huang YB, Int. J. Pharm., 356, 144 (2008)
  15. Paolino D, Lucania G, Mardente D, Alhaique F, Fresta M, J. Control. Release, 106, 99 (2005)
  16. Fang YP, Huang YB, Wu PC, Tsai YH, Eur. J. Pharm. Biopharm., 73, 391 (2009)
  17. Park SN, Lee HJ, Kim HS, Park MA, Gu HA, Korean J. Chem. Eng., 30(3), 688 (2013)
  18. Park SN, Lee HJ, Gu HA, Korean J. Chem. Eng., 31(3), 485 (2014)