화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.25, No.7, 341-346, July, 2015
Catalyst-Free and Large-Area Deposition of Graphitic Carbon Films on Glass Substrates by Pyrolysis of Camphor
E-mail:
The feasibility of obtaining graphitic carbon films on targeted substrates without a catalyst and transfer step was explored through the pyrolysis of the botanical derivative camphor. In a horizontal quartz tube, camphor was subjected to a sequential process of evaporation and thermal decomposition; then, the decomposed product was deposited on a glass substrate. Analysis of the Raman spectra suggest that the deposited film is related to unintentionally doped graphitic carbon containing some sp-sp 2 linear carbon chains. The films were transparent in the visible range and electrically conductive, with a sheet resistance comparable to that of graphene. It was also demonstrated that graphitic films with similar properties can be reproduciblyobtained, while property control was readily achieved by varying the process temperature.
  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306(5696), 666 (2004)
  2. Novoselov KS, Fal'ko VI, Colombo L, Gellert PR, Schwab MG, Kim K, Nature, 490(7419), 192 (2012)
  3. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG, Nat. Nanotechnol., 3(2), 101 (2008)
  4. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y, ACS Nano, 2(3), 463 (2008)
  5. Sutter PW, Flege JI, Sutter EA, Nat. Mater., 7(5), 406 (2008)
  6. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH, Nature, 457(7230), 706 (2009)
  7. Bae S, Kim H, Lee Y, Xu XF, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S, Nat. Nanotechnol., 5(8), 574 (2010)
  8. Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M, Nano Lett., 8(7), 2012 (2008)
  9. Liu F, Zhang Y, Carbon, 48(9), 2394 (2010)
  10. Kalita G, Matsushima M, Uchida H, Wakita K, Umeno M, J. Mater. Chem., 20(43), 9713 (2010)
  11. Jerng SK, Yu DS, Lee JH, Kim C, Yoon S, Chun SH, Nanoscale Res. Lett., 6(10), 565 (2011)
  12. Ferrari AC, Robertson J, Phys. Rev. B, 64(9), 075414 (2001)
  13. Ferrari AC, Basko DM, Nat. Nanotechnol., 8(4), 235 (2013)
  14. Chu PK, Li LH, Mater. Chem. Phys., 96(2-3), 253 (2006)
  15. Wang Q, Allred DD, Knight LV, J. Raman Spectrosc., 26(12), 1039 (1995)
  16. Ramya, John KJ, Manoj B, Int. J. Electrochem. Sci., 8(7), 9421 (2013)
  17. Hao Y, Wang Y, Wang L, Ni Z, Wang Z, Wang R, Koo CK, Shen Z, Thong JTL, Small, 6(2), 195 (2010)
  18. Vinayan BP, Schwarzburgera NI, Fichtner M, J. Mater. Chem. A, 3(13), 6810 (2015)
  19. Wang C, Zhou Y, He L, Ng TW, Hong G, Wu QH, Gao F, Lee CS, Zhang W, Nanoscale, 5(2), 600 (2013)
  20. Popov VN, Lambin P, Phys. Rev. B, 88(7), 075427 (2013)
  21. Wang J, Zhang S, Zhou J, Liu R, Du R, Xu H, Liu Z, Zhang J, Liu Z, Phys. Chem. Chem. Phys., 16(23), 11303 (2014)
  22. Jo G, Choe M, Lee S, Park W, Kahng YH, Lee T, Nanotechnology, 23(11), 112001 (2012)