화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.11, 2227-2235, November, 2015
Desulfurization of coke oven gas using char-supported Fe-Zn-Mo catalysts: Mechanisms and thermodynamics
E-mail:
Sulfidation properties of char-supported Fe-Zn-Mo sorbents prepared by ultrasonic impregnation method were investigated during simultaneous removal of H2S and COS from coke oven gas (COG) using a fixed-bed quartz reactor. Sorbent samples before and after sulfidation were analyzed using X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The experimental results showed that the addition of Mo significantly improved the desulfurization properties (i.e., breakthrough time, sulfur capacity and desulfurization efficiency) of Fe-Zn sorbents. Desulfurization reactions were exothermic and thermodynamically favorable in the temperature range of 200-400 oC. Thermodynamc analysis of the sorbents indicated that higher concentration of H2S and lower concentration of H2 favors the reaction of metal oxides with H2S to form metal sulfides.
  1. LEPPALAHTI J, KOLJONEN T, Fuel Process. Technol., 43(1), 1 (1995)
  2. van der Drift A, van Doorn J, Vermeulen JW, Biomass Bioenerg., 20(1), 45 (2001)
  3. Cheah S, Carpenter DL, Magrini-Bair KA, Energy Fuels, 23, 5291 (2009)
  4. Kang SH, Lee SJ, Jung WH, Chung SW, Yun Y, Jo SH, Park YC, Baek JI, Korean J. Chem. Eng., 30(1), 67 (2013)
  5. Meng XM, de Jong W, Pal R, Verkooijen AHM, Fuel Process. Technol., 91(8), 964 (2010)
  6. Novochinskii II, Song CS, Ma XL, Liu XS, Shore L, Lampert J, Farrauto RJ, Energy Fuels, 18(2), 584 (2004)
  7. Yin FK, Yu JL, Dou JX, Gupta S, Moghtaderi B, Lucas J, Energy Fuels, 28(4), 2481 (2014)
  8. Zheng XR, Bao WR, Jin QM, Chang LP, Xie KC, Energy Fuels, 25(7), 2997 (2011)
  9. Garces HF, Espinal AE, Suib SL, J. Phys. Chem. C, 116, 8465 (2012)
  10. Xie W, Chang LP, Wang DH, Xie KC, Wall T, Yu JL, Fuel, 89(4), 868 (2010)
  11. Ahmed MA, Alonso L, Palacios JM, Cilleruelo C, Abanades JC, Solid State Ion., 138(1-2), 51 (2000)
  12. Liu GQ, Huang ZH, Kang FY, J. Hazard. Mater., 215-216, 166 (2012)
  13. Dhage P, Samokhvalov A, Repala D, Duin EC, Bowman M, Tatarchuk BJ, Ind. Eng. Chem. Res., 49(18), 8388 (2010)
  14. Park YC, Jo SH, Ryu HJ, Moon JH, Yi CK, Yoon YS, Baek JI, Korean J. Chem. Eng., 29(12), 1812 (2012)
  15. Ozaydin Z, Yasyerli S, Dogu G, Ind. Eng. Chem. Res., 47(4), 1035 (2008)
  16. Slimane RB, Abbasian J, Ind. Eng. Chem. Res., 39(5), 1338 (2000)
  17. Wang DH, Yu JL, Chang LP, Wang DM, Chem. Eng. J., 166(1), 362 (2011)
  18. Yin FK, Yu JL, Gupta S, Wang SY, Wang DM, Dou JX, Fuel Process. Technol., 117, 17 (2014)
  19. Zhao H, Zhang DX, Wang FF, Wu TT, Gao JS, Process Saf. Environ. Protect., 87(4), 274 (2009)
  20. Bao WR, Zhang ZY, Ren XR, Li F, Chang LP, Energy Fuels, 23(7), 3600 (2009)