- Previous Article
- Next Article
- Table of Contents
Macromolecular Research, Vol.23, No.9, 795-801, September, 2015
Enhanced thermoelectric performance of CNT thin film p/n junctions doped with N-containing organic molecules
E-mail:
Despite the high thermoelectric performance of traditional inorganic semiconductors-based thermoelectric materials, recent efforts have been made to utilize the unique advantages of organic thermoelectric materials. Carbon-based organic thermoelectric materials are considered as an economically viable option, offering the advantages of large area fabrication, flexible and lightweight modules, in addition to their low thermal conductivity required for superior thermoelectric performance. The limitation of low electrical conductivity of organic materials could be circumvented by forming a percolating network of single walled carbon nanotubes (SWNTs) in the form of buckypaper. In this study, buckypapers were prepared by vacuum filtration of acid-treated SWNTs, which provided a percolating network for efficient electron transport. Subsequently, p-type and n-type buckypapers were prepared by acid treatment or reduction by urea moelecules or encapsulating SWNTs with electron donating organic compounds like polyethylenimine. The thermoelectric properties of the buckypapers were analyzed as a function of temperature. The acid-treated SWNTs and urea-SWNTs generated positive thermopower of up to 60 μV/K at 380 K, and hence were used as p-type thermoelectric materials. On the other hand, the polyethylenimine-SWNT generated negative thermopower of ?60 μV/K at 380 K, used as n-doped material. Subsequently, thermoelectric module was fabricated by alternatively stacking the p-type and n-type buckypapers. Each p-n couple generated a thermoelectric voltage of 0.7 mV per temperature gradient of 50 K. With an increase in the number of p-n layers to four, the thermoelectric voltage increased to 7 mV for a temperature gradient of 50 K. This module generated a power upto 960 nW upon varying load resistance due to their low electrical resistance formed by well percolated networks of SWNTs. The higher electrical conductivities of p-type and n-type SWNTs were achieved by incorporating organic materials such as reducing agent (urea) or electron donating functional groups (PEI) around the surface of SWNTs, respectively.
- DiSalvo FJ, Science, 285, 703 (1999)
- Poudel B, Hao Q, Ma Y, Lan YC, Minnich A, Yu B, Yan XA, Wang DZ, Muto A, Vashaee D, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren ZF, Science, 320, 634 (2008)
- Chung DY, Hogan T, Brazis P, Rocci-Lane M, Kannewurf C, Bastea M, Uher C, Kanatzidis MG, Science, 287, 1024 (2000)
- Zhai Y, Zhang T, Xiao Y, Jiang J, Yang S, Xu G, J. Alloy. Compd., 563, 285 (2013)
- Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid VP, Kanatzidis MG, Nat. Chem., 3, 160 (2011)
- Zhang QC, Malliakas CD, Kanatzidis MG, Inorg. Chem., 48(23), 10910 (2009)
- Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M, Berggren M, Crispin X, Nat. Mater., 10(6), 429 (2011)
- Chang KC, Jeng MS, Yang CC, Chou YW, Wu SK, Thomas M, Peng YC, J. Electron. Mater., 38, 1182 (2009)
- Bubnova O, Berggren M, Crispin X, J. Am. Chem. Soc., 134(40), 16456 (2012)
- Iijima S, Nature, 354, 56 (1991)
- Park T, Park C, Kim V, Shin H, Kim E, Energy Environ. Sci., 6, 788 (2013)
- Zhao W, Fan S, Xiao N, Liu D, Tay YY, Yu C, Sim D, Hng HH, Zhang Q, Boey F, Ma J, Zhao X, Zhang H, Yan Q, Energy Environ. Sci., 5, 5364 (2012)
- Wu J, Sun Y, Xu W, Zhang Q, Synth. Met., 189, 177 (2014)
- Lee W, Cho YJ, Choi HR, Park HJ, Chang T, Park M, Lee H, J. Sep. Sci., 35, 3250 (2012)
- Piao M, Na J, Choi J, Kim J, Kennedy GP, Kim G, Roth S, Dettlaff-Weglikowska U, Carbon, 62, 430 (2013)
- Choi J, Tu NDK, Lee SS, Lee H, Kim JS, Kim H, Macromol. Res., 22(10), 1104 (2014)
- Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T, Nature, 382(6586), 54 (1996)
- Xie S, Li W, Pan Z, Chang B, Sun L, J. Phys. Chem. Solids, 61, 1153 (2000)
- Kim D, Kim Y, Choi K, Grunlan JC, Yu C, ACS Nano, 4, 513 (2009)
- Yu C, Choi K, Yin L, Grunlan JC, ACS Nano, 5, 7885 (2011)
- Yu C, Murali A, Choi K, Ryu Y, Energy Environ. Sci., 5, 9481 (2012)
- Lee HS, Yun CH, Kim SK, Choi JH, Lee CJ, Jin HJ, Lee H, Park SJ, Park M, Appl. Phys. Lett., 95, 134104 (2009)
- Hewitt CA, Kaiser AB, Roth S, Craps M, Czerw R, Carroll DL, Nano Lett., 12, 1307 (2012)
- Zhao JJ, Park HK, Han J, Lu JP, J. Phys. Chem. B, 108(14), 4227 (2004)
- Wang CC, Zhou G, Liu HT, Wu J, Qiu Y, Gu BL, Duan WH, J. Phys. Chem. B, 110(21), 10266 (2006)
- Park T, Sim K, Lee J, Yi W, J. Nanosci. Nanotechnol., 12, 5812 (2012)
- Kim BH, Park TH, Baek SJ, Lee DS, Park SJ, Kim JS, Park YW, J. Appl. Phys., 103, 096103 (2008)
- Zhou YX, Gaur A, Hur SH, Kocabas C, Meitl MA, Shim M, Rogers JA, Nano Lett., 4, 2031 (2004)
- Lei Z, Lu L, Zhao XS, Energy Environ. Sci., 5, 6391 (2012)
- Boffoue O, Jacquot A, Dauscher A, Lenoir B, Stolzer M, Rev. Sci. Instrum., 76, 053907 (2005)
- Biamino S, Badini C, J. Eur. Ceram. Soc., 24, 3021 (2004)
- Koizhaiganova RB, Hwang DH, Lee CJ, Roth S, Dettlaff-Weglikowska U, Phys. Status Solidi B, 247, 2793 (2010)
- Nonoguchi Y, Ohashi K, Kanazawa R, Ashiba K, Hata K, Nakagawa T, Adachi C, Tanase T, Kawai T, Sci. Rep., 3, 3344 (2013)
- Skakalova V, Kaiser AB, Woo YS, Roth S, Phys. Rev. B, 74, 085403 (2006)
- Raravikar NR, Keblinski P, Rao AM, Dresselhaus MS, Schadler LS, Ajayan PM, Phys. Rev. B, 66, 235424 (2002)
- Li Z, Saini V, Dervishi E, Kunets VP, Zhang J, Xu Y, Biris AR, Salamo GJ, Biris AS, Appl. Phys. Lett., 96, 033110 (2010)