Polymer(Korea), Vol.39, No.6, 934-939, November, 2015
항산화제 코팅 Polylactic Acid 필름의 항염증 활성
Inhibitory Effects of an Antioxidant Coating on a Polylactic Acid Film on Inflammatory Cytokines from Macrophage
E-mail:,
초록
의료용으로 사용되고 있는 고분자는 체내에 적용했을 경우 초기의 염증반응이 종종 문제점으로 대두되며, 이는 면역세포의 활성산소의 배출과 관련되어 있다. 본 연구에서는 이러한 부작용을 해결하기 위해 항산화제를 필름표면에 코팅하여 활성산소 발생 저해에 의한 항염증 효과를 평가하고자 하였다. Macrophage에 의한 염증 효과를 평가한 결과, 항산화제가 코팅된 polylactic acid 필름에서 pro-inflammatory cytokine의 생성이 저해됨을 확인하였다. 또한 항산화제 코팅 시 코팅제로 사용되는 고분자의 종류 및 분자량에 따른 방출 거동을 관찰한 결과, 고분자의 종류 및 분자량에 따라 항산화제의 방출 제어가 가능하였다. 이는 항염증 반응에 효과적으로 대응할 수 있는 항산화제 코팅 polylactic acid 필름을 제조함으로써 다양하고 광범위한 체내용도 전개가 가능할 것으로 생각된다.
Polylactic acid (PLA) films have been widely used in medical devices for surgical treatments. However, their use has been associated with complications, such as inflammation around the PLA film implant area. Several antioxidant agents have been incorporated on the surface of PLA films to suppress initial excessive inflammatory reactions through the quenching of reactive oxygen species (ROS) released from macrophages. The suppression of inflammation was evaluated by measuring the levels of various pro-inflammatory cytokines produced by the macrophages. In addition, by measuring quercetin release behavior, we determined the optimum type and molecular weight of the film coating polymer for the effective suppression of inflammation. These results suggest that the incorporation and controlled release of quercetin could be a promising method to reduce inflammation induced by PLA films.
- Klinge U, Klosterhalfen B, Muller M, Schumpelick V, Eur. J. Surg., 165, 665 (1999)
- Amid P, Hernia, 1, 5 (1997)
- Silich RC, McSherry CK, Surg. Endosc., 10, 537 (1996)
- Ramos CL, Pou S, Britigan BE, Cohen MS, Rosen GM, J. Biol. Chem., 267, 8307 (1992)
- Steineck MJ, Khan AU, Karnovsky MJJ, Biol. Chem., 267, 13425 (1992)
- Lee WS, Back YI, Kim JR, Cho KH, Sok DE, Jeong TS, Bioorg. Med. Chem. Lett., 14, 5623 (2004)
- Trenam CW, Blake DR, Morris CJ, J. Invest. Dermatol., 99, 675 (1992)
- Schoonbroodt S, Piette J, Biochem. Pharmacol., 60, 1075 (2000)
- Vane J, Mitchell J, Tomlinson I, Bishop-bailey D, Croxtall J, Willoughby D, Proc. Natl. Acad. Sci. U.S.A., 91, 1046 (1994)
- Packer L, Witt EH, Tritschler HJ, Free Radic. Biol. Med., 99, 227 (1995)
- Jacob K, Periago MJ, Bohm V, Br. J. Natr., 99, 137 (2008)
- Abe S, Tanaka Y, Fujise N, Nakamura T, Masunaga H, Nagasawa T, Yagi M, J. Partner. Enteral. Nutr., 31, 181 (2007)
- Rajakumar DV, Rao MNA, Biochem. Pharmacol., 46, 2067 (1993)
- Dillow AK, Lowman AM, Biomimetic Materials and Design, Dekker, New York, 2002.
- Aggarwal B, Kumar A, Bhati AC, Anticancer Res., 23, 363 (2003)
- Latan A, J. Food Sci., 31, 395 (1966)
- Younes M, Siegers CP, Planta Med., 43, 240 (1981)
- Yuting C, Rongliang Z, Zhongjian J, Yong J, Free Radic. Biol. Med., 9, 19 (1990)
- Woranuch S, Yoksan R, Carbohydr. Polym., 96, 495 (2012)
- Flahaut E, Durrieu MC, Remy-Zolghadri M, Bareille R, Baquey C, J. Mater. Sci., 41(8), 2411 (2006)
- Hussain SM, Hess KL, Gearhart JM, Toxicol. In Vitro, 19, 975 (2005)
- Delgado AV, McManus AT, Chambers JP, P. Neuropeptides, 37, 355 (2003)
- Trengove NJ, Bielefeldt-Ohmann H, Stacey MC, Wound Repair Regen., 8, 13 (2000)
- Kohno T, Brewer MT, Baker SL, Schwartz PE, King MW, Hale KK, Proc. Natl. Acad. Sci. U.S.A., 87, 8331 (1990)
- Barrick B, Campbell EJ, Owen CA, Wound Repair Regen., 7, 410 (1999)