Korean Chemical Engineering Research, Vol.53, No.6, 776-782, December, 2015
TiO2-SnO2 나노입자로 부터 고굴절 하드코팅 도막의 제조
Preparation of Hard Coating Films with High Refractive Index from TiO2-SnO2 Nanoparticles
E-mail:
초록
TiO2 나노입자의 광촉매 반응을 억제하기 위해 평균 직경 3~5 nm의 TiO2-SnO2 나노입자가 titanium tetraisopropoxide (TTIP)와 tin chloride의 가수분해 반응에 의해 합성되었다. 생성된 TiO2-SnO2 나노입자를 졸-겔법에 의해 3-glycidoxypropyl trimethoxysilane(GPTMS)과 반응시킴에 의해 유-무기 혼성 코팅 용액이 제조되었다. 그 후 코팅 용액을 기재인 polycarbonate(PC) 시트 위에 스핀 코팅시키고, 120 oC에서 열경화 시켜 고굴절률 하드코팅 도막이 제조되었다. TiO2-SnO2 나노입자로부터의 코팅 도막은 TiO2 나노입자로부터 얻어진 코팅 도막의 2H에 비해 증가된 3H의 연필경도를 보였다. 또한 TiO2-SnO2 나노입자로부터의 코팅 도막의 굴절률은 Sn/Ti 몰 비가 0에서 0.5로 증가함에 따라 633 nm 파장에서 1.543으로부터 1.623으로 향상되었다.
TiO2-SnO2 nanoparticles with an average diameter of 3~5 nm were synthesized by hydrolysis of titanium tetraisopropoxide (TTIP) and tin chloride to depress the photocatalytic activity of TiO2 nanoparticles. Organic-inorganic hybrid coating solutions were prepared by reacting the TiO2-SnO2 nanoparticles with 3-glycidoxypropyl trimethoxysilane (GPTMS) by the sol-gel method. The hard coating films with high refractive index were obtained by curing thermally at 120 oC after spin-coating the coating solutions on the polycarbonate (PC) sheets. The coating films from TiO2-SnO2 nanoparticles showed an improved pencil hardness of 3H compared to 2H of the coating films from TiO2 nanoparticles. Besides, the refractive index of the coating films from TiO2-SnO2 nanoparticles enhanced from 1.543 to 1.623 at 633 nm as the Sn/Ti molar ratio increased from 0 to 0.5.
Keywords:Organic-Inorganic Hybrid Coating Solutions;Hard Coating Films;TiO2-SnO2 Nanoparticles;3-Glycidoxypropyl Trimethoxysilane;High Refractive Index;Sol-Gel Method
- Yoshida M, Prasad PN, Chem. Mater., 8, 235 (1996)
- Nakayama N, Hayashi T, J. Appl. Polym. Sci., 105(6), 3662 (2007)
- Muller P, Braune B, Becker C, Krug H, Schmidt H, SPIE, 3136, 462 (1997)
- Nakayama N, Hayashi T, Colloids Surf. A: Physicochem. Eng. Asp., 317, 543 (2008)
- Choi JJ, Kim NU, Ahn CY, Song KC, Korean Chem. Eng. Res., 52(3), 388 (2014)
- You YS, Chung KH, Kim YM, Kim JH, Seo G, Korean J. Chem. Eng., 20(1), 58 (2003)
- Nakayama N, Hayashi T, Compos. Pt. A-Appl. Sci. Manuf., 38, 1996 (2007)
- Rahal A, Benhaoua A, Jlassi M, Benhaoua B, Superlattices Microstruct., 86, 403 (2015)
- ASTM D3359, “Standard Test Methods for Measuring Adhesion by Tape Test,” ASTM International, 927-929(1997).
- Song KC, Pratsinis SE, J. Colloid Interface Sci., 231(2), 289 (2000)
- Jung M, Kwak Y, J. Korean Ind. Eng. Chem., 18(6), 650 (2007)
- Liu Y, Lu C, Li M, Zhang L, Yang B, Colloids Surf. A: Physicochem. Eng. Asp., 328, 67 (2008)
- Yoshida M, Prasad PN, Chem. Mater., 8, 235 (1996)
- Nakayama N, Hayashi T, J. Appl. Polym. Sci., 105(6), 3662 (2007)
- Muller P, Braune B, Becker C, Krug H, Schmidt H, SPIE, 3136, 462 (1997)
- Nakayama N, Hayashi T, Colloids Surf. A: Physicochem. Eng. Asp., 317, 543 (2008)
- Choi JJ, Kim NU, Ahn CY, Song KC, Korean Chem. Eng. Res., 52(3), 388 (2014)
- You YS, Chung KH, Kim YM, Kim JH, Seo G, Korean J. Chem. Eng., 20(1), 58 (2003)
- Nakayama N, Hayashi T, Compos. Pt. A-Appl. Sci. Manuf., 38, 1996 (2007)
- Rahal A, Benhaoua A, Jlassi M, Benhaoua B, Superlattices Microstruct., 86, 403 (2015)
- ASTM D3359, “Standard Test Methods for Measuring Adhesion by Tape Test,” ASTM International, 927-929(1997).
- Song KC, Pratsinis SE, J. Colloid Interface Sci., 231(2), 289 (2000)
- Jung M, Kwak Y, J. Korean Ind. Eng. Chem., 18(6), 650 (2007)
- Liu Y, Lu C, Li M, Zhang L, Yang B, Colloids Surf. A: Physicochem. Eng. Asp., 328, 67 (2008)