화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.29, 32-34, September, 2015
Enhanced dye stability in dye-sensitized solar cells using 1D-structured titanate
E-mail:
Hydrogen titanate nanowires were synthesized for exploiting their high injection efficiency in dyesensitized solar cells and the degradation of a dye in the presence of the nanowires under UV irradiation was evaluated. The band-gap energy of the hydrogen titanate nanowires was 3.9 eV, which was much higher than that of commercial P25 TiO2 nanoparticles. Dye degradation of 40% was achieved with the nanowires, whereas P25 nanoparticles induced 70% degradation of the dye under UV irradiation. Thus, hydrogen titanate nanowires may prospectively be used as a photoanode material in dye-sensitized solar cells to minimize dye and electrolyte degradation by photocatalytic oxidation.
  1. Oregan B, Gratzel M, Nature, 353, 737 (1991)
  2. Hocˇevar M, Krasˇovec UO, Bokalicˇ M, Topicˇ M, Veurman W, Brandt H, Hinsch A, J. Ind. Eng. Chem., 19(5), 1464 (2013)
  3. Ju T, Lee H, Kang M, J. Ind. Eng. Chem., 20(5), 2636 (2014)
  4. Shaterian M, Barati M, Ozaee K, Enhessari M, J. Ind. Eng. Chem., 20(5), 3646 (2014)
  5. Zhao L, Yu JG, Fan JJ, Zhai PC, Wang SM, Electrochem. Commun., 11, 2052 (2009)
  6. Wei MD, Konishi Y, Zhou HS, Sugihara H, Arakawa H, J. Electrochem. Soc., 153(6), A1232 (2006)
  7. Asghar MI, Miettunen K, Halme J, Vahermaa P, Toivola M, Aitola K, Lund P, Energy Environ. Sci., 3, 418 (2010)
  8. Hinsch A, Kroon JM, Kern R, Uhlendorf I, Holzbock J, Meyer A, Prog. Photovolt., 9, 425 (2001)
  9. Senevirathna MKI, Pitigala PKDDP, Premalal EVA, Tennakone K, Kumara GRA, Konno A, Sol. Energy Mater. Sol. Cells, 91(6), 544 (2007)
  10. Manifacier JC, De Murcia M, Fillard JP, Vicario E, Thin Solid Films, 41, 127 (1977)
  11. Strehlow WH, Cook EL, J. Phys. Chem. Ref Data, 2, 163 (1973)
  12. Tiwana P, Docampo P, Johnston MB, Snaith HJ, Herz LM, ACS Nano, 5, 5158 (2011)
  13. Song HY, Jiang HF, Liu T, Liu XQ, Meng GY, Mater. Res. Bull., 42(2), 334 (2007)
  14. Stengl V, Bakardjieva S, Subrt J, Vecernikova E, Szatmary L, Klementova M, Balek V, Appl. Catal. B: Environ., 63(1-2), 20 (2006)
  15. Chen ZJ, Lin BZ, Xu BH, Li XL, Wang QQ, Zhang KZ, Zhu MC, J. Porous Mat., 18, 185 (2011)
  16. Yu H, Yu J, Cheng B, Chemosphere, 66, 2050 (2007)
  17. Chong MN, Jin B, Zhu HY, Chow CWK, Saint C, Chem. Eng. J., 150(1), 49 (2009)
  18. Zhu HY, Gao XP, Lan Y, Song DY, Xi YX, Zhao JC, J. Am. Chem. Soc., 126(27), 8380 (2004)
  19. Chatterjee S, Bhattacharyya K, Ayyub P, Tyagi AK, J. Phys. Chem. C, 114, 9424 (2010)
  20. Epling GA, Lin C, Chemosphere, 46, 937 (2002)
  21. Riss A, Elser MJ, Bernardi J, Diwald O, J. Am. Chem. Soc., 131(17), 6198 (2009)
  22. Nikolay T, Larina L, Shevaleevskiy O, Ahn BT, Energy Environ. Sci., 4, 1480 (2011)
  23. Yang JJ, Jin ZS, Wang XD, Li W, Zhang JW, Zhang SL, Guo XY, Zhang ZJ, J. Chem. Soc.-Dalton Trans., 3898 (2003)
  24. Xu H, Tao X, Wang DT, Zheng YZ, Chen JF, Electrochim. Acta, 55(7), 2280 (2010)
  25. Bavykin DV, Gordeev SN, Moskalenko AV, Lapkin AA, Walsh FC, J. Phys. Chem. B, 109(18), 8565 (2005)
  26. Nagaveni K, Hegde MS, Ravishankar N, Subbanna GN, Madrao G, Langmuir, 20(7), 2900 (2004)
  27. Reddy KM, Manorama SV, Reddy AR, Mater. Chem. Phys., 78(1), 239 (2003)
  28. Buchholz DB, Liu J, Marks TJ, Zhang M, Chang RPH, ACS Appl. Mater. Interfaces, 1, 2147 (2009)
  29. Sakai N, Ebina Y, Takada K, Sasaki T, J. Am. Chem. Soc., 126(18), 5851 (2004)
  30. Carnie M, Bryant D, Watson T, Worsley D, Int. J. Photoenergy, 524590 (2012)