화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.29, 87-96, September, 2015
Analysis of fixed bed data for the extraction of a rate mechanism for the reaction of hematite with methane
E-mail:
Chemical looping combustion is a promising technology for the capture of CO2 involving redox materials as oxygen carriers. The effects of reduction conditions, namely, temperature and fuel partial pressure on the conversion products are investigated. The experiments were conducted in a laboratory fixed-bed reactor that was operated cyclically with alternating reduction and oxidation periods. Reactions are assumed to occur in the shell surrounding the particle grains with diffusion of oxygen to the surface from the grain core. Activation energies for the shell and core reactions range from 9 to 209 kJ/mol depending on the reaction step.
  1. Ciferno J, Litynski J, Brickett L, Murphy J, Munson R, Zaremsky C, Marano J, Strock J, DOE/NETL Advanced CO2 Capture R&D Program: Technology Update, U.S. Department of Energy, 2011.
  2. Wall TF, Proc. Combust. Inst., 31, 31 (2007)
  3. Fan LS, Chemical Looping Systems for Fossil Energy Conversion, John Wiley & Sons, NJ, 2010.
  4. Cho P, Mattisson T, Lyngfelt A, Ind. Eng. Chem. Res., 44(4), 668 (2005)
  5. Mattisson T, Lyngfelt A, Cho P, Fifth International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, (2000), p. 205.
  6. Son SR, Kim SD, Ind. Eng. Chem. Res., 45(8), 2689 (2006)
  7. Abad A, Adanez J, Garcia-Labiano F, de Diego LF, Gayan P, Celaya J, Chem. Eng. Sci., 62(1-2), 533 (2007)
  8. Abad A, Mattisson T, Lyngfelt A, Johansson M, Fuel, 86(7-8), 1021 (2007)
  9. Abad A, Adanez J, Cuadrat A, Garcia-Labiano F, Gayan P, de Diego LF, Chem. Eng. Sci., 66(4), 689 (2011)
  10. Adanez J, Garcia-Labiano F, de Diego LF, Gayan P, Celaya J, Abad A, in: Rubin ES, Keith DW, Gilboy CF (Eds.), Greenhouse Gas Control Technologies, vol. 1, Elsevier Ltd, 2005.
  11. Cho P, Mattissson T, Lyngfelt A, in: Proceedings of the 7th International Conference on Circulating Fluidized Beds (CFB-7), Niagara Falls, Ontario, May 5-8, (2002), p. 599.
  12. Gayan P, Pans MA, Ortiz M, Abad A, de Diego LF, Garcia-Labiano F, Adanez J, Fuel Process. Technol., 96, 37 (2012)
  13. Go KS, Son SR, Kim SD, Int. J. Hydrog. Energy, 33(21), 5986 (2008)
  14. He F, Wang H, Dai Y, J. Nat. Gas Chem., 16, 155 (2007)
  15. Johansson M, Mattisson T, Lyngfelt A, Ind. Eng. Chem. Res., 43(22), 6978 (2004)
  16. Leion H, Lyngfelt A, Johansson M, Jerndal E, Mattisson T, Chem. Eng. Res. Des., 86(9A), 1017 (2008)
  17. Mattisson T, Johansson M, Lyngfelt A, Energy Fuels, 18(3), 628 (2004)
  18. Mendiara T, Abad A, de Diego LF, Garcia-Labiano F, Gayan P, Adanez J, Energy Fuels, 26(2), 1420 (2012)
  19. Moghtaderi B, Song H, Energy Fuels, 24, 5359 (2010)
  20. Monazam ER, Breault RW, Siriwardane R, Richards G, Carpenter S, Chem. Eng. J., 232, 478 (2013)
  21. Son SR, Kim SD, in: Proceedings 9th International Conference on Environmental Science and Technology, 2005, p. B-871.
  22. Zhang JS, Guo QJ, Liu YZ, Cheng Y, Ind. Eng. Chem. Res., 51(39), 12773 (2012)
  23. Luo M, Wang SZ, Wang LF, Lv MM, J. Power Sources, 270, 434 (2014)
  24. Zhang YX, Doroodchi E, Moghtaderi B, Appl. Energy, 113, 1916 (2014)
  25. Forutan HR, Karimi E, Hafizi A, Rahampour MR, Keshavarz P, J. Ind. Eng. Chem., 21, 900 (2014)
  26. Ku Y, Wu HC, Chiu PC, Tseng YH, Kuo YL, Appl. Energy, 113, 1909 (2014)
  27. Breault RW, Monazam ER, Appl. Energy, 145, 180 (2014)
  28. Callister WD, Materials Science and Engineering Applications, John Wiley & Sons, New York, 2000.
  29. Bradshaw AV, Matas AG, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 7B, 81 (1976)
  30. Bora DK, Braun A, Erat S, Safonova O, Graule T, Constable EC, Curr. Appl. Phys., 12(3), 817 (2012)
  31. Hayes PC, Grieveson P, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 12B, 319 (1981)
  32. Hayes PC, Grieveson P, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 12B, 579 (1981)
  33. Baguley P, St. John DH, Hayes PC, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 14B, 513 (1983)
  34. Matthew SP, Hayes PC, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 21B, 153 (1990)
  35. Madelung O (Ed.), Semiconductors Vol. III: Non-Tetrahedrally Bonded Binary Compounds II, Springer-Verlag, Berlin/Heidelberg/New York, 41d.
  36. Chatterjee A, Beyond the Blast Furnace, CRC Press, 1994p. 2.
  37. Monazam ER, Breault RW, Siriwardane R, Energy Fuels, 28(8), 5406 (2014)
  38. Pineau A, Kanari N, Gaballah I, Thermochim. Acta, 447(1), 89 (2006)
  39. Pang JM, Guo PR, Zhao P, Cao CZ, Zhang DW, J. Iron Steel Res. Int., 16(5), 7 (2009)