화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.29, 314-320, September, 2015
A novel synthesis approach to improve structural and catalytic properties of Mn-Ni-Si mixed oxide powders for water gas shift reaction
E-mail:
Mn-Ni-Si mixed oxide catalyst synthesized via thermal decomposition of [Mn(H2O)6][Ni(dipic)2]·H2OSiO2 precursor was evaluated for water gas shift reaction and its structural properties and catalytic activity were compared to those of a sample prepared by co-precipitation conventional method. The results reveal that the catalyst obtained by new inorganic precursor approach presents higher BET specific surface area, smaller particle size, and higher activity in comparison with the co-precipitated catalyst, indicating that inorganic precursor route has more advantages than co-precipitation conventional method for the synthesis of Mn-Ni-Si catalyst.
  1. Pradhan S, Reddy AS, Devi RN, Chilukuri S, Catal. Today, 141, 72 (2009)
  2. Popa T, Xu GQ, Barton TF, Argyle MD, Appl. Catal. A: Gen., 379(1-2), 15 (2010)
  3. Ilinich O, Ruettinger W, Liu XS, Farrauto R, J. Catal., 247(1), 112 (2007)
  4. Natesakhawat S, Wang XQ, Zhang LZ, Ozkan US, J. Mol. Catal. A-Chem., 260(1-2), 82 (2006)
  5. Kappen P, Grunwaldt JD, Hammershoi BS, Troger L, Clausen BS, J. Catal., 198(1), 56 (2001)
  6. Marono M, Sanchez JM, Ruiz E, Int. J. Hydrog. Energy, 35(1), 37 (2010)
  7. Lee JY, Lee D, Lee K, Wang Y, Catal. Today, 146, 260 (2009)
  8. Chen CS, Lin JH, Lai TW, Li BH, J. Catal., 263(1), 155 (2009)
  9. Gunawardana PVDS, Lee HC, Kim DH, Int. J. Hydrog. Energy, 34, 1334 (2009)
  10. Grubert G, Kolf S, Baerns M, Vauthey I, Farrusseng D, van Veen AC, Mirodatos C, Stobbe ER, Cobden PD, Appl. Catal. A: Gen., 306, 17 (2006)
  11. Qi XM, Flytzani-Stephanopoulos M, Ind. Eng. Chem. Res., 43(12), 3055 (2004)
  12. Zerva C, Philippopoulos CJ, Appl. Catal. B: Environ., 67(1-2), 105 (2006)
  13. Poggio-Fraccari E, Sambeth J, Baronetti G, Marino F, Int. J. Hydrog. Energy, 39(16), 8675 (2014)
  14. Lilong J, Binghuo Y, Kemi W, J. Rare Earths, 26, 352 (2008)
  15. Du XR, Yuan ZS, Cao L, Zhang CX, Wang SD, Fuel Process. Technol., 89(2), 131 (2008)
  16. Hedrick SA, Chuang SSC, Pant A, Dastidar AG, Catal. Today, 55(3), 247 (2000)
  17. Obalova L, Jiratova K, Kovanda F, Valaskova M, Balabanova J, Pacultova K, J. Mol. Catal. A-Chem., 248(1-2), 210 (2006)
  18. Seok SH, Choi SH, Park ED, Han SH, Lee JS, J. Catal., 209(1), 6 (2002)
  19. Qi H, Li D, Yang C, Na Y, Li W, Sun Y, Zhong B, Catal. Commun., 4, 339 (2003)
  20. Seok SH, Han SH, Lee JS, Appl. Catal. A: Gen., 215(1-2), 31 (2001)
  21. Cheng-hua Z, Yang Y, Zhi-chao T, Hang-wei X, Yong-wang L, J. Fuel Chem. Technol., 34, 695 (2006)
  22. Mehandjiev D, Naydenov A, Ivanov G, Appl. Catal. A: Gen., 206(1), 13 (2001)
  23. Rad ARS, Khoshgouei MB, Rezvani S, Rezvani AR, Fuel Process. Technol., 96, 9 (2012)
  24. Salehirad A, Latifi SM, Miroliaee A, Mater. Res. Bull., 59, 104 (2014)
  25. Rad ARS, Khoshgouei MB, Rezvani AR, J. Mol. Catal. A-Chem., 344(1-2), 11 (2011)
  26. Gonzalez-Baro AC, Pis-Diez R, Piro OE, Parajon-Costa BS, Polyhedron, 27, 502 (2008)
  27. Yenikaya C, Poyraz M, Sari M, Demirci F, Ilkimen H, Buyukgungor O, Polyhedron, 28, 3526 (2009)
  28. Nakamoto K, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed., Wiley-Interscience, New York, 1997.
  29. Vargova Z, Zeleoak V, Cisaoova I, Gyoryova K, Thermochim. Acta, 423(1-2), 149 (2004)
  30. Mao L, Wang Y, Qi Y, Cao M, Hu C, J. Mol. Struct., 688, 197 (2004)
  31. Ucar I, Karabulut B, Bulut A, Buyukgungor O, J. Mol. Struct., 834-836, 336 (2007)
  32. Baes CF, Mesmer RE, The Hydrolysis of Cations, Wiley, New York, 1976.
  33. Marr G, Rockett BW, Practical Inorganic Chemistry, VNR, London, 1972.
  34. Miessler GL, College SO, Fischer PJ, Inorganic Chemistry, 5th ed., Pearson Education, Macalester College, 2014.
  35. Fatsikostas AN, Verykios XE, J. Catal., 225(2), 439 (2004)