화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.29, 338-343, September, 2015
Synthesis of mesoporous silica MCM-41 using sodium silicate derived from copper ore tailings with an alkaline molted-salt method
E-mail:
The alkaline molten-salt method was taken to effectively extract silicon from the copper ore tailings at 500-600 °C. The extraction rate of SiO2 and Fe2O3 was ca. 82% and below 2%, respectively. Hematite was not converted to soluble NaFeO2 in low temperature NaOH-NaNO3 molten system. Mesoporous MCM-41 was synthesized using a hydrothermal method with the extracted Na2SiO3. The analysis of small angle XRD, N2 adsorption.desorption and HRTEM showed that the silica sample had a regular hexagonal structure of typical mesoporous MCM-41. The obtained MCM-41 silica had a BET specific surface area of 946.68 m2/g and mesopore volume of 0.76 cm3/g.
  1. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, J. Am. Chem. Soc., 114, 10834 (1992)
  2. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature, 359, 710 (1992)
  3. Parida KM, Dash SS, J. Mol. Catal. A-Chem., 306(1-2), 54 (2009)
  4. Song K, Guan JQ, Wang ZQ, Xu C, Kan QB, Appl. Surf. Sci., 255(11), 5843 (2009)
  5. Yang XY, Zhang SB, Qiu ZM, Tian G, Feng YF, Xiao FS, J. Phys. Chem. B, 108(15), 4696 (2004)
  6. Alothman ZA, Apblett AW, J. Hazard. Mater., 182(1-3), 581 (2010)
  7. Wu Y, Jin Y, Cao J, Yilihan P, Wen Y, Zhou J, J. Ind. Eng. Chem., 20(5), 2792 (2014)
  8. Chang W, Shin J, Chae G, Jang SR, Ahn BJ, J. Ind. Eng. Chem., 19(3), 739 (2013)
  9. Gaydhankar TR, Samuel V, Jha RK, Kumar R, Joshi PN, Mater. Res. Bull., 42(8), 1473 (2007)
  10. Yang HM, Deng YH, Du CF, Jin SM, Appl. Clay Sci., 47, 351 (2010)
  11. Kumar P, Mal N, Oumi Y, Yamana K, Sano T, J. Mater. Chem., 11, 3285 (2001)
  12. Du CF, Yang HM, J. Colloid Interface Sci., 369, 216 (2012)
  13. Jin SM, Cui KX, Cuan HY, Yang M, Liu L, Lan CF, Appl. Clay Sci., 56, 1 (2012)
  14. Yang G, Deng YX, Wang J, Ceram. Int., 40, 7401 (2014)
  15. Yu HH, Xue XX, Huang DW, Mater. Res. Bull., 44(11), 2112 (2009)
  16. Chen T, Yan B, Lei C, Xiao XM, Hydrometallurgy, 147-148, 112 (2014)
  17. Gazea B, Adam K, Kontopoulos A, Miner. Eng., 9(1), 23 (1996)
  18. Name T, Sheridan C, Miner. Eng., 64, 15 (2014)
  19. Ali-dahmane T, Adjdir M, Hamacha R, Villieras F, Bengueddach A, Weidler PG, C.R. Chim., 17, 1 (2014)
  20. Misran H, Singh R, Begum S, Yarmo MA, J. Mater. Process. Technol., 186, 8 (2007)
  21. Xiao QG, Chen Y, Gao YY, Xu HB, Zhang Y, Hydrometallurgy, 104, 216 (2010)
  22. Kumar D, Schumacher K, du Fresne von Hohenesche C, Grun M, Unger KK, Colloids Surf. A: Physicochem. Eng. Asp., 187-188, 109 (2001)
  23. Matsumoto A, Chen H, Tsutsumi K, Grun M, Unger K, Microporous Mesoporous Mater., 32, 55 (1999)
  24. Hui KS, Chao CYH, J. Hazard. Mater., 137(2), 1135 (2006)
  25. Nishiyama N, Park DH, Egashira Y, Ueyama K, Sep. Purif. Technol., 32(1-3), 127 (2003)
  26. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD, J. Am. Chem. Soc., 120(24), 6024 (1998)
  27. Armatas GS, Kanatzidis MG, Science, 313, 817 (2006)
  28. Xiong LM, Shi JL, Zhang LX, Nogami MY, J. Am. Chem. Soc., 129(39), 11878 (2007)
  29. Mehraban Z, Farzaneh F, Microporous Mesoporous Mater., 88, 84 (2006)
  30. Lee CK, Liu SS, Juang LC, Wang CC, Lin KS, Lyu MD, J. Hazard. Mater., 147(3), 997 (2007)