화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.30, 29-32, October, 2015
Effect of MoO3 on mechanical interfacial behavior and anti-oxidation of carbon fibers-reinforced composites
E-mail:
In this study, the effect of MoO3 content on the mechanical interfacial properties and the anti-oxidation behaviors of carbon.carbon (C/C) composites were investigated. The MoO3 content was varied to 0, 5, 10, 20, and 30 wt% of the resin matrix. These composites were prepared by a one-direction filament winding method, and were subjected to carbonization (heat-treatment at 1100 8C). As a result, the anti-oxidation behavior and mechanical interfacial properties improved with increasing MoO3 content at respective heat-treatment temperatures. This is because MoO3 penetrated the composites through the cracks or pores formed during the manufacturing of the C/C composites and preferentially reacted with oxygen, thereby decreasing the rate of oxidation. This disturbed the carbon active species in the composites, increasing the physical cohesion between the interfaces of the carbon fibers and matrices, and improving thermal stability.
  1. Buckley JD, Edie DD (Eds.), Carbon-Carbon Materials and Composites, Noyes Publications, New Jersey, 1993, , Chap. 1.
  2. McKee DW, Carbon, 24, 737 (1986)
  3. Li S, Li K, Du H, Zhang S, Shen X, Carbon, 51, 437 (2013)
  4. Park SJ, Seo MK, Interface Science and Composites, Academic Press, Boston, MA, 2011.
  5. Dong W, Liu HC, Park SJ, Jin FL, J. Ind. Eng. Chem., (in press).
  6. Galiguzov A, Malakho A, Kulakov V, Kenigfest A, Kramarenko E, Avdeev V, Carbon Lett., 14, 22 (2013)
  7. Lieberman ML, Pierson HO, Carbon, 12, 233 (1974)
  8. Park SJ, Seo MK, Lee JR, Polym.(Korea), 25(6), 866 (2001)
  9. Lim DS, An JW, Lee HJ, Wear, 252, 512 (2002)
  10. Park SJ, Cho MS, J. Mater. Sci., 35(14), 3525 (2000)
  11. Hu J, Dong S, Zhang X, Zhou H, Wu B, Wang Z, He P, Gao L, Compos. Pt. A-Appl. Sci. Manuf., 48, 73 (2013)
  12. Venugopalan R, Sathiyamoorthy D, Acharya R, Tyagi AK, J. Nucl. Mater., 404, 19 (2010)
  13. Park SJ, Cho MS, Carbon, 38, 1053 (2000)
  14. Casalegno V, Salvo M, Ferraris M, Carbon, 50, 2296 (2012)
  15. Heim D, Hartmann M, Neumayer J, Klotz C, Ahmet-Tsaous O, Zaremba S, Drechsler K, Compos. Pt. B, 54, 365 (2013)
  16. Park SJ, Jin FL, Lee JR, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 374, 109 (2004)
  17. Tolbin AY, Spitsyn BV, Serdan AA, Averin AA, Malakho AP, Kepman AV, Sorokina NE, Avdeev VV, Inorg. Mater., 49, 49 (2013)
  18. Park SJ, Kim BJ, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 408, 269 (2005)
  19. Jeong E, Kim J, Cho SH, Kim J, Han IS, Lee YS, J. Ind. Eng. Chem., 17(2), 191 (2011)
  20. Jiang S, Li Q, Zhao Y, Wang J, Kang M, Compos. Sci. Technol., 110, 87 (2015)
  21. Zou B, Hui Y, Huang W, Zhao S, Chen X, Xu J, Tao S, Wang Y, Cai X, Cao X, J. Eur. Ceram. Soc., 35, 2017 (2015)
  22. Hu C, Pang S, Tang S, Yang Z, Wang S, Cheng HM, Corrosion Sci., 94, 452 (2015)
  23. Allardice DJ, Walker PL, Carbon, 8, 375 (1970)
  24. Mckee DW, Carbon, 25, 551 (1987)
  25. Donnet JB, Bansal RC, Carbon Fiber, second ed., Marcel Dekker, New York, NY, 1990.
  26. Griffith A, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 221, 163 (1920)
  27. Chen MC, Hourston DJ, Sun WB, J. Eur. Polym., 31, 199 (1995)
  28. Coats AW, Redfern JW, Polym. Lett., 3, 917 (1965)
  29. Park SJ, Cho MS, Lee JR, Pak PK, Carbon, 37, 1685 (1999)
  30. Ehrburger P, Baranne P, Lahaye J, Carbon, 24, 495 (1986)